RESEARCH ARTICLE

Structure theorems of E(n)-Azumaya algebras

  • Ying ZHANG ,
  • Huixiang CHEN ,
  • Haibo HONG
Expand
  • School of Mathematics Science, Yangzhou University, Yangzhou 225002, China

Received date: 23 Feb 2010

Accepted date: 16 Apr 2010

Published date: 05 Dec 2010

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Let k be a field and E(n) be the 2n+1-dimensional pointed Hopf algebra over k constructed by Beattie, Dăscălescu and Grünenfelder [J. Algebra, 2000, 225: 743-770]. E(n) is a triangular Hopf algebra with a family of triangular structures RM parameterized by symmetric matrices M in Mn(k). In this paper, we study the Azumaya algebras in the braided monoidal category E(n)RM and obtain the structure theorems for Azumaya algebras in the category E(n)RM, where M is any symmetric n × n matrix over k.

Cite this article

Ying ZHANG , Huixiang CHEN , Haibo HONG . Structure theorems of E(n)-Azumaya algebras[J]. Frontiers of Mathematics in China, 2010 , 5(4) : 757 -776 . DOI: 10.1007/s11464-010-0066-9

1
Armour A, Chen H X, Zhang Y H. Structure theorems of H4-Azumaya algebras. J Algebra, 2006, 305: 360-393

DOI

2
Beattie M, Dăscălescu S, Grünenfelder L. Constructing pointed Hopf algebras by Ore extension. J Algebra, 2000, 225: 743-770

DOI

3
Caenepeel S, Van Oystaeyen F, Zhang Y H. Quantum Yang-Baxter module algebras. K-Theory, 1993, 8: 231-255

DOI

4
Caenepeel S, Van Oystaeyen F, Zhang Y H. The Brauer group of Yetter-Drinfeld module algebras. Trans Amer Math Soc, 1997, 349: 3737-3771

DOI

5
Carnovale G. Some isomorphisms for the Brauer groups of a Hopf algebra. Comm Algebra, 2001, 29: 5291-5305

DOI

6
Carnovale G, Cuadra J. Cocycle twisting of E(n)-module algebras and applications to the Brauer group. K-Theory, 2004, 33: 251-276

DOI

7
Chen H X, Zhang Y H. Cocycle deformations and isomorphisms of Brauer groups. Comm Algebra, 2007, 35: 399-433

DOI

8
DeMeyer F, Ford T. Computing the Brauer group of ℤ2-dimodule algebras. J Pure Appl Algebra, 1988, 54: 197-208

DOI

9
Jacobson N. Basic Algebra II. San Francisco: Freeman WH and Company, 1980

10
Kassel C. Quantum Groups. New York: Springer-Verlag, 1995

11
Lam T Y. The Algebraic Theory of Quadratic Forms. San Francisco: The Benjamin/Cummings Publishing Company, INC, 1973

12
Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995

DOI

13
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Series in Math, Vol 82. Providence: Amer Math Soc, 1993

14
Panaite F, Van Oystaeyen F. Quasitriangular structures for some pointed Hopf algebras of dimension 2n. Comm Algebra, 1999, 27: 4929-4942

DOI

15
Small C. The Brauer-Wall group of a commutative ring. Trans Amer Soc, 1971, 156: 455-491

16
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969

17
Van Oystaeyen F, Zhang Y H. The Brauer group of a braided monoidal category. J Algebra, 1998, 202: 96-128

DOI

18
Van Oystaeyen F, Zhang Y H. The Brauer group of a Hopf algebra. In: New Directions in Hopf Algebras. MSRI Publications, Vol 43. 2002, 437-485

19
Wall C T C. Graded Brauer groups. J Reine Angew Math, 1964, 213: 187-199

DOI

Options
Outlines

/