Frontiers of Mathematics in China >
Structure theorems of E(n)-Azumaya algebras
Received date: 23 Feb 2010
Accepted date: 16 Apr 2010
Published date: 05 Dec 2010
Copyright
Let k be a field and E(n) be the 2n+1-dimensional pointed Hopf algebra over k constructed by Beattie, Dăscălescu and Grünenfelder [J. Algebra, 2000, 225: 743-770]. E(n) is a triangular Hopf algebra with a family of triangular structures RM parameterized by symmetric matrices M in Mn(k). In this paper, we study the Azumaya algebras in the braided monoidal category and obtain the structure theorems for Azumaya algebras in the category , where M is any symmetric n × n matrix over k.
Key words: Yetter-Drinfeld module; Brauer group; Azumaya algebra
Ying ZHANG , Huixiang CHEN , Haibo HONG . Structure theorems of E(n)-Azumaya algebras[J]. Frontiers of Mathematics in China, 2010 , 5(4) : 757 -776 . DOI: 10.1007/s11464-010-0066-9
1 |
Armour A, Chen H X, Zhang Y H. Structure theorems of H4-Azumaya algebras. J Algebra, 2006, 305: 360-393
|
2 |
Beattie M, Dăscălescu S, Grünenfelder L. Constructing pointed Hopf algebras by Ore extension. J Algebra, 2000, 225: 743-770
|
3 |
Caenepeel S, Van Oystaeyen F, Zhang Y H. Quantum Yang-Baxter module algebras. K-Theory, 1993, 8: 231-255
|
4 |
Caenepeel S, Van Oystaeyen F, Zhang Y H. The Brauer group of Yetter-Drinfeld module algebras. Trans Amer Math Soc, 1997, 349: 3737-3771
|
5 |
Carnovale G. Some isomorphisms for the Brauer groups of a Hopf algebra. Comm Algebra, 2001, 29: 5291-5305
|
6 |
Carnovale G, Cuadra J. Cocycle twisting of E(n)-module algebras and applications to the Brauer group. K-Theory, 2004, 33: 251-276
|
7 |
Chen H X, Zhang Y H. Cocycle deformations and isomorphisms of Brauer groups. Comm Algebra, 2007, 35: 399-433
|
8 |
DeMeyer F, Ford T. Computing the Brauer group of
|
9 |
Jacobson N. Basic Algebra II. San Francisco: Freeman WH and Company, 1980
|
10 |
Kassel C. Quantum Groups. New York: Springer-Verlag, 1995
|
11 |
Lam T Y. The Algebraic Theory of Quadratic Forms. San Francisco: The Benjamin/Cummings Publishing Company, INC, 1973
|
12 |
Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995
|
13 |
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Series in Math, Vol 82. Providence: Amer Math Soc, 1993
|
14 |
Panaite F, Van Oystaeyen F. Quasitriangular structures for some pointed Hopf algebras of dimension 2n. Comm Algebra, 1999, 27: 4929-4942
|
15 |
Small C. The Brauer-Wall group of a commutative ring. Trans Amer Soc, 1971, 156: 455-491
|
16 |
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
|
17 |
Van Oystaeyen F, Zhang Y H. The Brauer group of a braided monoidal category. J Algebra, 1998, 202: 96-128
|
18 |
Van Oystaeyen F, Zhang Y H. The Brauer group of a Hopf algebra. In: New Directions in Hopf Algebras. MSRI Publications, Vol 43. 2002, 437-485
|
19 |
Wall C T C. Graded Brauer groups. J Reine Angew Math, 1964, 213: 187-199
|
/
〈 | 〉 |