Structure theorems of E(n)-Azumaya algebras

Ying ZHANG, Huixiang CHEN, Haibo HONG

PDF(247 KB)
PDF(247 KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 757-776. DOI: 10.1007/s11464-010-0066-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Structure theorems of E(n)-Azumaya algebras

Author information +
History +

Abstract

Let k be a field and E(n) be the 2n+1-dimensional pointed Hopf algebra over k constructed by Beattie, Dăscălescu and Grünenfelder [J. Algebra, 2000, 225: 743-770]. E(n) is a triangular Hopf algebra with a family of triangular structures RM parameterized by symmetric matrices M in Mn(k). In this paper, we study the Azumaya algebras in the braided monoidal category E(n)RM and obtain the structure theorems for Azumaya algebras in the category E(n)RM, where M is any symmetric n × n matrix over k.

Keywords

Yetter-Drinfeld module / Brauer group / Azumaya algebra

Cite this article

Download citation ▾
Ying ZHANG, Huixiang CHEN, Haibo HONG. Structure theorems of E(n)-Azumaya algebras. Front Math Chin, 2010, 5(4): 757‒776 https://doi.org/10.1007/s11464-010-0066-9

References

[1]
Armour A, Chen H X, Zhang Y H. Structure theorems of H4-Azumaya algebras. J Algebra, 2006, 305: 360-393
CrossRef Google scholar
[2]
Beattie M, Dăscălescu S, Grünenfelder L. Constructing pointed Hopf algebras by Ore extension. J Algebra, 2000, 225: 743-770
CrossRef Google scholar
[3]
Caenepeel S, Van Oystaeyen F, Zhang Y H. Quantum Yang-Baxter module algebras. K-Theory, 1993, 8: 231-255
CrossRef Google scholar
[4]
Caenepeel S, Van Oystaeyen F, Zhang Y H. The Brauer group of Yetter-Drinfeld module algebras. Trans Amer Math Soc, 1997, 349: 3737-3771
CrossRef Google scholar
[5]
Carnovale G. Some isomorphisms for the Brauer groups of a Hopf algebra. Comm Algebra, 2001, 29: 5291-5305
CrossRef Google scholar
[6]
Carnovale G, Cuadra J. Cocycle twisting of E(n)-module algebras and applications to the Brauer group. K-Theory, 2004, 33: 251-276
CrossRef Google scholar
[7]
Chen H X, Zhang Y H. Cocycle deformations and isomorphisms of Brauer groups. Comm Algebra, 2007, 35: 399-433
CrossRef Google scholar
[8]
DeMeyer F, Ford T. Computing the Brauer group of ℤ2-dimodule algebras. J Pure Appl Algebra, 1988, 54: 197-208
CrossRef Google scholar
[9]
Jacobson N. Basic Algebra II. San Francisco: Freeman WH and Company, 1980
[10]
Kassel C. Quantum Groups. New York: Springer-Verlag, 1995
[11]
Lam T Y. The Algebraic Theory of Quadratic Forms. San Francisco: The Benjamin/Cummings Publishing Company, INC, 1973
[12]
Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995
CrossRef Google scholar
[13]
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Series in Math, Vol 82. Providence: Amer Math Soc, 1993
[14]
Panaite F, Van Oystaeyen F. Quasitriangular structures for some pointed Hopf algebras of dimension 2n. Comm Algebra, 1999, 27: 4929-4942
CrossRef Google scholar
[15]
Small C. The Brauer-Wall group of a commutative ring. Trans Amer Soc, 1971, 156: 455-491
[16]
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
[17]
Van Oystaeyen F, Zhang Y H. The Brauer group of a braided monoidal category. J Algebra, 1998, 202: 96-128
CrossRef Google scholar
[18]
Van Oystaeyen F, Zhang Y H. The Brauer group of a Hopf algebra. In: New Directions in Hopf Algebras. MSRI Publications, Vol 43. 2002, 437-485
[19]
Wall C T C. Graded Brauer groups. J Reine Angew Math, 1964, 213: 187-199
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(247 KB)

Accesses

Citations

Detail

Sections
Recommended

/