Structure theorems of E(n)-Azumaya algebras
Ying ZHANG, Huixiang CHEN, Haibo HONG
Structure theorems of E(n)-Azumaya algebras
Let k be a field and E(n) be the 2n+1-dimensional pointed Hopf algebra over k constructed by Beattie, Dăscălescu and Grünenfelder [J. Algebra, 2000, 225: 743-770]. E(n) is a triangular Hopf algebra with a family of triangular structures RM parameterized by symmetric matrices M in Mn(k). In this paper, we study the Azumaya algebras in the braided monoidal category and obtain the structure theorems for Azumaya algebras in the category , where M is any symmetric n × n matrix over k.
Yetter-Drinfeld module / Brauer group / Azumaya algebra
[1] |
Armour A, Chen H X, Zhang Y H. Structure theorems of H4-Azumaya algebras. J Algebra, 2006, 305: 360-393
CrossRef
Google scholar
|
[2] |
Beattie M, Dăscălescu S, Grünenfelder L. Constructing pointed Hopf algebras by Ore extension. J Algebra, 2000, 225: 743-770
CrossRef
Google scholar
|
[3] |
Caenepeel S, Van Oystaeyen F, Zhang Y H. Quantum Yang-Baxter module algebras. K-Theory, 1993, 8: 231-255
CrossRef
Google scholar
|
[4] |
Caenepeel S, Van Oystaeyen F, Zhang Y H. The Brauer group of Yetter-Drinfeld module algebras. Trans Amer Math Soc, 1997, 349: 3737-3771
CrossRef
Google scholar
|
[5] |
Carnovale G. Some isomorphisms for the Brauer groups of a Hopf algebra. Comm Algebra, 2001, 29: 5291-5305
CrossRef
Google scholar
|
[6] |
Carnovale G, Cuadra J. Cocycle twisting of E(n)-module algebras and applications to the Brauer group. K-Theory, 2004, 33: 251-276
CrossRef
Google scholar
|
[7] |
Chen H X, Zhang Y H. Cocycle deformations and isomorphisms of Brauer groups. Comm Algebra, 2007, 35: 399-433
CrossRef
Google scholar
|
[8] |
DeMeyer F, Ford T. Computing the Brauer group of
CrossRef
Google scholar
|
[9] |
Jacobson N. Basic Algebra II. San Francisco: Freeman WH and Company, 1980
|
[10] |
Kassel C. Quantum Groups. New York: Springer-Verlag, 1995
|
[11] |
Lam T Y. The Algebraic Theory of Quadratic Forms. San Francisco: The Benjamin/Cummings Publishing Company, INC, 1973
|
[12] |
Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995
CrossRef
Google scholar
|
[13] |
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Series in Math, Vol 82. Providence: Amer Math Soc, 1993
|
[14] |
Panaite F, Van Oystaeyen F. Quasitriangular structures for some pointed Hopf algebras of dimension 2n. Comm Algebra, 1999, 27: 4929-4942
CrossRef
Google scholar
|
[15] |
Small C. The Brauer-Wall group of a commutative ring. Trans Amer Soc, 1971, 156: 455-491
|
[16] |
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
|
[17] |
Van Oystaeyen F, Zhang Y H. The Brauer group of a braided monoidal category. J Algebra, 1998, 202: 96-128
CrossRef
Google scholar
|
[18] |
Van Oystaeyen F, Zhang Y H. The Brauer group of a Hopf algebra. In: New Directions in Hopf Algebras. MSRI Publications, Vol 43. 2002, 437-485
|
[19] |
Wall C T C. Graded Brauer groups. J Reine Angew Math, 1964, 213: 187-199
CrossRef
Google scholar
|
/
〈 | 〉 |