Structure theorems of E(n)-Azumaya algebras

Ying Zhang , Huixiang Chen , Haibo Hong

Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 757 -776.

PDF (247KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 757 -776. DOI: 10.1007/s11464-010-0066-9
Research Article
RESEARCH ARTICLE

Structure theorems of E(n)-Azumaya algebras

Author information +
History +
PDF (247KB)

Abstract

Let k be a field and E(n) be the 2n+1-dimensional pointed Hopf algebra over k constructed by Beattie, Dăscălescu and Grünenfelder [J. Algebra, 2000, 225: 743–770]. E(n) is a triangular Hopf algebra with a family of triangular structures RM parameterized by symmetric matrices M in Mn(k). In this paper, we study the Azumaya algebras in the braided monoidal category $E_{(n)} \mathcal{M}^{R_M } $ and obtain the structure theorems for Azumaya algebras in the category $E_{(n)} \mathcal{M}^{R_M } $, where M is any symmetric n×n matrix over k.

Keywords

Yetter-Drinfeld module / Brauer group / Azumaya algebra

Cite this article

Download citation ▾
Ying Zhang, Huixiang Chen, Haibo Hong. Structure theorems of E(n)-Azumaya algebras. Front. Math. China, 2010, 5(4): 757-776 DOI:10.1007/s11464-010-0066-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armour A., Chen H. X., Zhang Y. H. Structure theorems of H4-Azumaya algebras. J Algebra, 2006, 305: 360-393.

[2]

Beattie M., Dăscălescu S., Grünenfelder L. Constructing pointed Hopf algebras by Ore extension. J Algebra, 2000, 225: 743-770.

[3]

Caenepeel S., Van Oystaeyen F., Zhang Y. H. Quantum Yang-Baxter module algebras. K-Theory, 1993, 8: 231-255.

[4]

Caenepeel S., Van Oystaeyen F., Zhang Y. H. The Brauer group of Yetter-Drinfeld module algebras. Trans Amer Math Soc, 1997, 349: 3737-3771.

[5]

Carnovale G. Some isomorphisms for the Brauer groups of a Hopf algebra. Comm Algebra, 2001, 29: 5291-5305.

[6]

Carnovale G., Cuadra J. Cocycle twisting of E(n)-module algebras and applications to the Brauer group. K-Theory, 2004, 33: 251-276.

[7]

Chen H. X., Zhang Y. H. Cocycle deformations and isomorphisms of Brauer groups. Comm Algebra, 2007, 35: 399-433.

[8]

DeMeyer F., Ford T. Computing the Brauer group of ℤ2-dimodule algebras. J Pure Appl Algebra, 1988, 54: 197-208.

[9]

Jacobson N. Basic Algebra II, 1980, San Francisco: Freeman WH and Company.

[10]

Kassel C. Quantum Groups, 1995, New York: Springer-Verlag.

[11]

Lam T. Y. The Algebraic Theory of Quadratic Forms, 1973, San Francisco: The Benjamin/Cummings Publishing Company, INC.

[12]

Majid S. Foundations of Quantum Group Theory, 1995, Cambridge: Cambridge Univ Press

[13]

Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Series in Math, 1993, Providence: Amer Math Soc.

[14]

Panaite F., Van Oystaeyen F. Quasitriangular structures for some pointed Hopf algebras of dimension 2n. Comm Algebra, 1999, 27: 4929-4942.

[15]

Small C. The Brauer-Wall group of a commutative ring. Trans Amer Soc, 1971, 156: 455-491.

[16]

Sweedler M. E. Hopf Algebras, 1969, New York: Benjamin.

[17]

Van Oystaeyen F., Zhang Y. H. The Brauer group of a braided monoidal category. J Algebra, 1998, 202: 96-128.

[18]

Van Oystaeyen F., Zhang Y. H. The Brauer group of a Hopf algebra. New Directions in Hopf Algebras. MSRI Publications, 2002, 43: 437-485.

[19]

Wall C. T. C. Graded Brauer groups. J Reine Angew Math, 1964, 213: 187-199.

AI Summary AI Mindmap
PDF (247KB)

793

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/