RESEARCH ARTICLE

co-s-modules

  • Lingling YAO , 1,2 ,
  • Jianlong CHEN 1
Expand
  • 1. Department of Mathematics, Southeast University, Nanjing 210096, China
  • 2. Department of Mathematics, Bielefeld University, Bielefeld 33615, Germany

Received date: 17 Dec 2009

Accepted date: 19 Apr 2010

Published date: 05 Dec 2010

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

J. Wei recently proposed a concept of s-modules which is another generalization of ∗-modules besides n-modules [J. Algebra, 2005, 291: 312-324]. In this paper, we consider the co-s-modules and give some characterizations and properties. It is found that the class of co-s-modules contains co-selfsmall injective cogenerators. The relations between co-s-modules and co-n-modules are also considered.

Cite this article

Lingling YAO , Jianlong CHEN . co-s-modules[J]. Frontiers of Mathematics in China, 2010 , 5(4) : 747 -756 . DOI: 10.1007/s11464-010-0065-x

1
Angeleri Hügel L, Coelho F U. Infinitely generated tilting modules of finite projective dimension. Forum Math, 2001, 13: 239-250

DOI

2
Colby P R. A generalization of Morita duality and the tilting theorem. Comm Algebra, 1989, 17: 1709-1722

DOI

3
Colby R R, Fuller K R. Costar modules. J Algebra, 2001, 242: 146-159

DOI

4
Colby R R, Fuller K R. Equivalence and duality for module categories. Cambridge: Cambridge University Press, 2004

DOI

5
Colpi R. Some remarks on equivalences between categories of modules. Comm Algebra, 1990, 18: 1935-1951

DOI

6
Colpi R. Tilting modules and ∗-modules. Comm Algebra, 1993, 21: 1095-1102

DOI

7
Colpi R, D’Este G, Tonolo A. Quasi-tilting modules and counter equivalences. J Algebra, 1997, 191: 461-494

DOI

8
Colpi R, Menini C. On the structure of ∗-modules. J Algebra, 1993, 158(2): 400-419

DOI

9
Fuller K R. Density and equivalence. J Algebra, 1974, 29: 528-550

DOI

10
Fuller K R. A note on quasi-duality. In: Dikranjan D, Salce L, eds. Abelian Groups, Module Theory, and Topology. Lecture Notes in Pure and Appl Math, Vol 201. New York: CRC Press, 1998, 227-234

11
Fuller K R, Xue W. On quasi-duality modules. Comm Algebra, 2000, 28: 1919-1937

DOI

12
Menini C, Orsatti A. Representable equivalences between categories of modules and applications. Rend Sem Mat Univ Padova, 2000, 82: 2147-2172

13
Miyashita Y. Tilting modules of finite projective dimension. Math Z, 1986, 193: 113-146

DOI

14
Trlifaj J. ∗-Modules are finitely generated. J Algebra, 1994, 169: 392-398

DOI

15
Wei J Q. ∗s-modules. J Algebra, 2005, 291: 312-324

DOI

16
Wei J Q, Huang Z Y, Tong W T, Huang J H. Tilting modules of finite projective dimension and a generalization of ∗-modules. J Algebra, 2003, 268: 404-418

DOI

17
Yao L, Chen J. Co-∗n-modules. Algebra Colloq, 2010, 17(3): 447-456

Options
Outlines

/