Received date: 17 Dec 2009
Accepted date: 19 Apr 2010
Published date: 05 Dec 2010
Copyright
J. Wei recently proposed a concept of -modules which is another generalization of ∗-modules besides -modules [J. Algebra, 2005, 291: 312-324]. In this paper, we consider the co--modules and give some characterizations and properties. It is found that the class of co--modules contains co-selfsmall injective cogenerators. The relations between co--modules and co--modules are also considered.
Key words:
co-
Lingling YAO , Jianlong CHEN . co--modules[J]. Frontiers of Mathematics in China, 2010 , 5(4) : 747 -756 . DOI: 10.1007/s11464-010-0065-x
1 |
Angeleri Hügel L, Coelho F U. Infinitely generated tilting modules of finite projective dimension. Forum Math, 2001, 13: 239-250
|
2 |
Colby P R. A generalization of Morita duality and the tilting theorem. Comm Algebra, 1989, 17: 1709-1722
|
3 |
Colby R R, Fuller K R. Costar modules. J Algebra, 2001, 242: 146-159
|
4 |
Colby R R, Fuller K R. Equivalence and duality for module categories. Cambridge: Cambridge University Press, 2004
|
5 |
Colpi R. Some remarks on equivalences between categories of modules. Comm Algebra, 1990, 18: 1935-1951
|
6 |
Colpi R. Tilting modules and ∗-modules. Comm Algebra, 1993, 21: 1095-1102
|
7 |
Colpi R, D’Este G, Tonolo A. Quasi-tilting modules and counter equivalences. J Algebra, 1997, 191: 461-494
|
8 |
Colpi R, Menini C. On the structure of ∗-modules. J Algebra, 1993, 158(2): 400-419
|
9 |
Fuller K R. Density and equivalence. J Algebra, 1974, 29: 528-550
|
10 |
Fuller K R. A note on quasi-duality. In: Dikranjan D, Salce L, eds. Abelian Groups, Module Theory, and Topology. Lecture Notes in Pure and Appl Math, Vol 201. New York: CRC Press, 1998, 227-234
|
11 |
Fuller K R, Xue W. On quasi-duality modules. Comm Algebra, 2000, 28: 1919-1937
|
12 |
Menini C, Orsatti A. Representable equivalences between categories of modules and applications. Rend Sem Mat Univ Padova, 2000, 82: 2147-2172
|
13 |
Miyashita Y. Tilting modules of finite projective dimension. Math Z, 1986, 193: 113-146
|
14 |
Trlifaj J. ∗-Modules are finitely generated. J Algebra, 1994, 169: 392-398
|
15 |
Wei J Q.
|
16 |
Wei J Q, Huang Z Y, Tong W T, Huang J H. Tilting modules of finite projective dimension and a generalization of ∗-modules. J Algebra, 2003, 268: 404-418
|
17 |
Yao L, Chen J. Co-
|
/
〈 | 〉 |