co-*s-modules

Lingling Yao , Jianlong Chen

Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 747 -756.

PDF (162KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 747 -756. DOI: 10.1007/s11464-010-0065-x
Research Article
RESEARCH ARTICLE

co-*s-modules

Author information +
History +
PDF (162KB)

Abstract

J. Wei recently proposed a concept of *s-modules which is another generalization of *-modules besides *n-modules [J. Algebra, 2005, 291: 312–324]. In this paper, we consider the co-*s-modules and give some characterizations and properties. It is found that the class of co-*s-modules contains co-selfsmall injective cogenerators. The relations between co-*s-modules and co-*n-modules are also considered.

Keywords

co-*s-module / co-selfsmall / *s-module / co-*n-module

Cite this article

Download citation ▾
Lingling Yao, Jianlong Chen. co-*s-modules. Front. Math. China, 2010, 5(4): 747-756 DOI:10.1007/s11464-010-0065-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Angeleri Hügel L., Coelho F. U. Infinitely generated tilting modules of finite projective dimension. Forum Math, 2001, 13: 239-250.

[2]

Colby P. R. A generalization of Morita duality and the tilting theorem. Comm Algebra, 1989, 17: 1709-1722.

[3]

Colby R. R., Fuller K. R. Costar modules. J Algebra, 2001, 242: 146-159.

[4]

Colby R. R., Fuller K. R. Equivalence and duality for module categories, 2004, Cambridge: Cambridge University Press

[5]

Colpi R. Some remarks on equivalences between categories of modules. Comm Algebra, 1990, 18: 1935-1951.

[6]

Colpi R. Tilting modules and *-modules. Comm Algebra, 1993, 21: 1095-1102.

[7]

Colpi R., D’Este G., Tonolo A. Quasi-tilting modules and counter equivalences. J Algebra, 1997, 191: 461-494.

[8]

Colpi R., Menini C. On the structure of *-modules. J Algebra, 1993, 158(2): 400-419.

[9]

Fuller K. R. Density and equivalence. J Algebra, 1974, 29: 528-550.

[10]

Fuller K. R. Dikranjan D., Salce L. A note on quasi-duality. Abelian Groups, Module Theory, and Topology, 1998, New York: CRC Press, 227-234.

[11]

Fuller K. R., Xue W. On quasi-duality modules. Comm Algebra, 2000, 28: 1919-1937.

[12]

Menini C., Orsatti A. Representable equivalences between categories of modules and applications. Rend Sem Mat Univ Padova, 2000, 82: 2147-2172.

[13]

Miyashita Y. Tilting modules of finite projective dimension. Math Z, 1986, 193: 113-146.

[14]

Trlifaj J. *-Modules are finitely generated. J Algebra, 1994, 169: 392-398.

[15]

Wei J. Q. *s-modules. J Algebra, 2005, 291: 312-324.

[16]

Wei J. Q., Huang Z. Y., Tong W. T., Huang J. H. Tilting modules of finite projective dimension and a generalization of *-modules. J Algebra, 2003, 268: 404-418.

[17]

Yao L., Chen J. Co-*n-modules. Algebra Colloq, 2010, 17(3): 447-456.

AI Summary AI Mindmap
PDF (162KB)

853

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/