co-?s-modules

Lingling YAO, Jianlong CHEN

PDF(162 KB)
PDF(162 KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 747-756. DOI: 10.1007/s11464-010-0065-x
RESEARCH ARTICLE
RESEARCH ARTICLE

co-?s-modules

Author information +
History +

Abstract

J. Wei recently proposed a concept of s-modules which is another generalization of ∗-modules besides n-modules [J. Algebra, 2005, 291: 312-324]. In this paper, we consider the co-s-modules and give some characterizations and properties. It is found that the class of co-s-modules contains co-selfsmall injective cogenerators. The relations between co-s-modules and co-n-modules are also considered.

Keywords

co-s-module / co-selfsmall / s-module / co-n-module

Cite this article

Download citation ▾
Lingling YAO, Jianlong CHEN. co-s-modules. Front Math Chin, 2010, 5(4): 747‒756 https://doi.org/10.1007/s11464-010-0065-x

References

[1]
Angeleri Hügel L, Coelho F U. Infinitely generated tilting modules of finite projective dimension. Forum Math, 2001, 13: 239-250
CrossRef Google scholar
[2]
Colby P R. A generalization of Morita duality and the tilting theorem. Comm Algebra, 1989, 17: 1709-1722
CrossRef Google scholar
[3]
Colby R R, Fuller K R. Costar modules. J Algebra, 2001, 242: 146-159
CrossRef Google scholar
[4]
Colby R R, Fuller K R. Equivalence and duality for module categories. Cambridge: Cambridge University Press, 2004
CrossRef Google scholar
[5]
Colpi R. Some remarks on equivalences between categories of modules. Comm Algebra, 1990, 18: 1935-1951
CrossRef Google scholar
[6]
Colpi R. Tilting modules and ∗-modules. Comm Algebra, 1993, 21: 1095-1102
CrossRef Google scholar
[7]
Colpi R, D’Este G, Tonolo A. Quasi-tilting modules and counter equivalences. J Algebra, 1997, 191: 461-494
CrossRef Google scholar
[8]
Colpi R, Menini C. On the structure of ∗-modules. J Algebra, 1993, 158(2): 400-419
CrossRef Google scholar
[9]
Fuller K R. Density and equivalence. J Algebra, 1974, 29: 528-550
CrossRef Google scholar
[10]
Fuller K R. A note on quasi-duality. In: Dikranjan D, Salce L, eds. Abelian Groups, Module Theory, and Topology. Lecture Notes in Pure and Appl Math, Vol 201. New York: CRC Press, 1998, 227-234
[11]
Fuller K R, Xue W. On quasi-duality modules. Comm Algebra, 2000, 28: 1919-1937
CrossRef Google scholar
[12]
Menini C, Orsatti A. Representable equivalences between categories of modules and applications. Rend Sem Mat Univ Padova, 2000, 82: 2147-2172
[13]
Miyashita Y. Tilting modules of finite projective dimension. Math Z, 1986, 193: 113-146
CrossRef Google scholar
[14]
Trlifaj J. ∗-Modules are finitely generated. J Algebra, 1994, 169: 392-398
CrossRef Google scholar
[15]
Wei J Q. ∗s-modules. J Algebra, 2005, 291: 312-324
CrossRef Google scholar
[16]
Wei J Q, Huang Z Y, Tong W T, Huang J H. Tilting modules of finite projective dimension and a generalization of ∗-modules. J Algebra, 2003, 268: 404-418
CrossRef Google scholar
[17]
Yao L, Chen J. Co-∗n-modules. Algebra Colloq, 2010, 17(3): 447-456

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(162 KB)

Accesses

Citations

Detail

Sections
Recommended

/