RESEARCH ARTICLE

Quantization of Schrödinger-Virasoro Lie algebra

  • Yucai SU ,
  • Lamei YUAN
Expand
  • Department of Mathematics, University of Science and Technology of China, Hefei 230026, China

Received date: 29 Nov 2009

Accepted date: 10 Jun 2010

Published date: 05 Dec 2010

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, we use the general quantization method by Drinfel’d twists to quantize the Schrödinger-Virasoro Lie algebra whose Lie bialgebra structures were recently discovered by Han-Li-Su. We give two different kinds of Drinfel’d twists, which are then used to construct the corresponding Hopf algebraic structures. Our results extend the class of examples of noncommutative and noncocommutative Hopf algebras.

Cite this article

Yucai SU , Lamei YUAN . Quantization of Schrödinger-Virasoro Lie algebra[J]. Frontiers of Mathematics in China, 2010 , 5(4) : 701 -715 . DOI: 10.1007/s11464-010-0072-y

1
Drinfel’d V G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Soviet Mathematics Doklady, 1983, 28(3): 667-671

2
Drinfel’d V G. Quantum groups. In: Proceeding of the International Congress of Mathematicians, Berkeley, California, 1986. Providence: American Mathematical Society, 1987, 798-820

3
Drinfel’d V G. On some unsolved problems in quantum group theory. Lecture Notes in Mathematics, 1992, 1510: 1-8

DOI

4
Entiquez B, Halbout G. Quantization of Γ-Lie bialgebras. Journal of Algebra, 2008, 319: 3752-3769

DOI

5
Etingof P, Kazhdan D. Quantization of Lie bialgebras I. Selecta Mathematica (New Series), 1996, 2: 1-41

DOI

6
Etingof P, Kazhdan D. Quantization of Lie bialgebras, part VI: Quantization of generalized Kac-Moody algebras. Transformation Groups, 2008, 13: 527-539

DOI

7
Etingof P, Schiffmann O. Lectures on Quantum Groups. 2nd ed. Boston: International Press, 2002

8
Gao S L, Jiang C P, Pei Y F. Structure of the extended Schrödinger-Virasoro Lie algebra. Algebra Colloquium, 2009, 16(4): 549-566

9
Giaquinto A, Zhang J. Bialgebra action, twists and universal deformation formulas. Journal of Pure and Applied Algebra, 1998, 128(2): 133-151

DOI

10
Grunspan C. Quantizations of the Witt algebra and of simple Lie algebras in characteristic p. Journal of Algebra, 2004, 280: 145-161

DOI

11
Han J Z, Li J B, Su Y C. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. Journal of Mathematical Physics, 2009, 50: 083504, 12 pp

12
Henkel M. Schrödinger invariance and strongly anisotropic critical systems. Journal of Statistical Physics, 1994, 75: 1023-1029

DOI

13
Henkel M, Unterberger J. Schrödinger invariance and space-time symmetries. Nuclear Physics B, 2003, 660: 407-412

14
Hu N H, Wang X L. Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case. Journal of Algebra, 2007, 312: 902-929

DOI

15
Li J B, Su Y C. Representations of the Schrödinger-Virasoro algebras. Journal of Mathematical Physics, 2008, 49: 053512

DOI

16
Li J B, Su Y C. The derivation algebra and automorphism group of the twisted Schrödinger-Virasoro algebra. arXiv:0801.2207v1, 2008

17
Li J B, Su Y C. Leibniz central extension on centerless twisted Schrödinger-Virasoro algebras. Frontiers of Mathematics in China, 2008, 3(3): 337-344

DOI

18
Li J B, Su Y C, Zhu L S. 2-cocycles of original deformative Schrödinger-Virasoro algebras. Science in China Series A: Mathematics, 2008, 51: 1989-1999

DOI

19
Roger C, Unterberger J. The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study. Annales Henri Poincaré, 2006, 7: 1477-1529

DOI

20
Song G A, Su Y C. Lie bialgebras of generalized-Witt type. Science in China Series A: Mathematics, 2006, 49(4): 533-544

DOI

21
Strade H, Farnsteiner R. Modular Lie Algebras and Their Representations. A Series of Monographs and Textbooks, Pure and Applied Mathematics, Vol 116. New York: Marcel Dekker, 1988

22
Tan S B, Zhang X F. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. arXiv:0804.1610v2, 2008

23
Unterberger J. On vertex algebra representations of the Schrödinger-Virasoro algebra. arXiv:cond-mat/0703214v2, 2007

Options
Outlines

/