Frontiers of Mathematics in China >
Quantization of Schrödinger-Virasoro Lie algebra
Received date: 29 Nov 2009
Accepted date: 10 Jun 2010
Published date: 05 Dec 2010
Copyright
In this paper, we use the general quantization method by Drinfel’d twists to quantize the Schrödinger-Virasoro Lie algebra whose Lie bialgebra structures were recently discovered by Han-Li-Su. We give two different kinds of Drinfel’d twists, which are then used to construct the corresponding Hopf algebraic structures. Our results extend the class of examples of noncommutative and noncocommutative Hopf algebras.
Key words: Lie bialgebra; quantization; Schrödinger-Virasoro Lie algebra
Yucai SU , Lamei YUAN . Quantization of Schrödinger-Virasoro Lie algebra[J]. Frontiers of Mathematics in China, 2010 , 5(4) : 701 -715 . DOI: 10.1007/s11464-010-0072-y
1 |
Drinfel’d V G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Soviet Mathematics Doklady, 1983, 28(3): 667-671
|
2 |
Drinfel’d V G. Quantum groups. In: Proceeding of the International Congress of Mathematicians, Berkeley, California, 1986. Providence: American Mathematical Society, 1987, 798-820
|
3 |
Drinfel’d V G. On some unsolved problems in quantum group theory. Lecture Notes in Mathematics, 1992, 1510: 1-8
|
4 |
Entiquez B, Halbout G. Quantization of Γ-Lie bialgebras. Journal of Algebra, 2008, 319: 3752-3769
|
5 |
Etingof P, Kazhdan D. Quantization of Lie bialgebras I. Selecta Mathematica (New Series), 1996, 2: 1-41
|
6 |
Etingof P, Kazhdan D. Quantization of Lie bialgebras, part VI: Quantization of generalized Kac-Moody algebras. Transformation Groups, 2008, 13: 527-539
|
7 |
Etingof P, Schiffmann O. Lectures on Quantum Groups. 2nd ed. Boston: International Press, 2002
|
8 |
Gao S L, Jiang C P, Pei Y F. Structure of the extended Schrödinger-Virasoro Lie algebra. Algebra Colloquium, 2009, 16(4): 549-566
|
9 |
Giaquinto A, Zhang J. Bialgebra action, twists and universal deformation formulas. Journal of Pure and Applied Algebra, 1998, 128(2): 133-151
|
10 |
Grunspan C. Quantizations of the Witt algebra and of simple Lie algebras in characteristic p. Journal of Algebra, 2004, 280: 145-161
|
11 |
Han J Z, Li J B, Su Y C. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. Journal of Mathematical Physics, 2009, 50: 083504, 12 pp
|
12 |
Henkel M. Schrödinger invariance and strongly anisotropic critical systems. Journal of Statistical Physics, 1994, 75: 1023-1029
|
13 |
Henkel M, Unterberger J. Schrödinger invariance and space-time symmetries. Nuclear Physics B, 2003, 660: 407-412
|
14 |
Hu N H, Wang X L. Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case. Journal of Algebra, 2007, 312: 902-929
|
15 |
Li J B, Su Y C. Representations of the Schrödinger-Virasoro algebras. Journal of Mathematical Physics, 2008, 49: 053512
|
16 |
Li J B, Su Y C. The derivation algebra and automorphism group of the twisted Schrödinger-Virasoro algebra. arXiv:0801.2207v1, 2008
|
17 |
Li J B, Su Y C. Leibniz central extension on centerless twisted Schrödinger-Virasoro algebras. Frontiers of Mathematics in China, 2008, 3(3): 337-344
|
18 |
Li J B, Su Y C, Zhu L S. 2-cocycles of original deformative Schrödinger-Virasoro algebras. Science in China Series A: Mathematics, 2008, 51: 1989-1999
|
19 |
Roger C, Unterberger J. The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study. Annales Henri Poincaré, 2006, 7: 1477-1529
|
20 |
Song G A, Su Y C. Lie bialgebras of generalized-Witt type. Science in China Series A: Mathematics, 2006, 49(4): 533-544
|
21 |
Strade H, Farnsteiner R. Modular Lie Algebras and Their Representations. A Series of Monographs and Textbooks, Pure and Applied Mathematics, Vol 116. New York: Marcel Dekker, 1988
|
22 |
Tan S B, Zhang X F. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. arXiv:0804.1610v2, 2008
|
23 |
Unterberger J. On vertex algebra representations of the Schrödinger-Virasoro algebra. arXiv:cond-mat/0703214v2, 2007
|
/
〈 | 〉 |