Quantization of Schrödinger-Virasoro Lie algebra
Yucai Su , Lamei Yuan
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 701 -715.
Quantization of Schrödinger-Virasoro Lie algebra
In this paper, we use the general quantization method by Drinfel’d twists to quantize the Schrödinger-Virasoro Lie algebra whose Lie bialgebra structures were recently discovered by Han-Li-Su. We give two different kinds of Drinfel’d twists, which are then used to construct the corresponding Hopf algebraic structures. Our results extend the class of examples of noncommutative and noncocommutative Hopf algebras.
Lie bialgebra / quantization / Schrödinger-Virasoro Lie algebra
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
Li J B, Su Y C. The derivation algebra and automorphism group of the twisted Schrödinger-Virasoro algebra. arXiv:0801.2207v1, 2008 |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
Tan S B, Zhang X F. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. arXiv:0804.1610v2, 2008 |
| [23] |
Unterberger J. On vertex algebra representations of the Schrödinger-Virasoro algebra. arXiv:cond-mat/0703214v2, 2007 |
/
| 〈 |
|
〉 |