Quantization of Schr?dinger-Virasoro Lie algebra

Yucai SU, Lamei YUAN

PDF(180 KB)
PDF(180 KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 701-715. DOI: 10.1007/s11464-010-0072-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Quantization of Schr?dinger-Virasoro Lie algebra

Author information +
History +

Abstract

In this paper, we use the general quantization method by Drinfel’d twists to quantize the Schrödinger-Virasoro Lie algebra whose Lie bialgebra structures were recently discovered by Han-Li-Su. We give two different kinds of Drinfel’d twists, which are then used to construct the corresponding Hopf algebraic structures. Our results extend the class of examples of noncommutative and noncocommutative Hopf algebras.

Keywords

Lie bialgebra / quantization / Schrödinger-Virasoro Lie algebra

Cite this article

Download citation ▾
Yucai SU, Lamei YUAN. Quantization of Schrödinger-Virasoro Lie algebra. Front Math Chin, 2010, 5(4): 701‒715 https://doi.org/10.1007/s11464-010-0072-y

References

[1]
Drinfel’d V G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Soviet Mathematics Doklady, 1983, 28(3): 667-671
[2]
Drinfel’d V G. Quantum groups. In: Proceeding of the International Congress of Mathematicians, Berkeley, California, 1986. Providence: American Mathematical Society, 1987, 798-820
[3]
Drinfel’d V G. On some unsolved problems in quantum group theory. Lecture Notes in Mathematics, 1992, 1510: 1-8
CrossRef Google scholar
[4]
Entiquez B, Halbout G. Quantization of Γ-Lie bialgebras. Journal of Algebra, 2008, 319: 3752-3769
CrossRef Google scholar
[5]
Etingof P, Kazhdan D. Quantization of Lie bialgebras I. Selecta Mathematica (New Series), 1996, 2: 1-41
CrossRef Google scholar
[6]
Etingof P, Kazhdan D. Quantization of Lie bialgebras, part VI: Quantization of generalized Kac-Moody algebras. Transformation Groups, 2008, 13: 527-539
CrossRef Google scholar
[7]
Etingof P, Schiffmann O. Lectures on Quantum Groups. 2nd ed. Boston: International Press, 2002
[8]
Gao S L, Jiang C P, Pei Y F. Structure of the extended Schrödinger-Virasoro Lie algebra. Algebra Colloquium, 2009, 16(4): 549-566
[9]
Giaquinto A, Zhang J. Bialgebra action, twists and universal deformation formulas. Journal of Pure and Applied Algebra, 1998, 128(2): 133-151
CrossRef Google scholar
[10]
Grunspan C. Quantizations of the Witt algebra and of simple Lie algebras in characteristic p. Journal of Algebra, 2004, 280: 145-161
CrossRef Google scholar
[11]
Han J Z, Li J B, Su Y C. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. Journal of Mathematical Physics, 2009, 50: 083504, 12 pp
[12]
Henkel M. Schrödinger invariance and strongly anisotropic critical systems. Journal of Statistical Physics, 1994, 75: 1023-1029
CrossRef Google scholar
[13]
Henkel M, Unterberger J. Schrödinger invariance and space-time symmetries. Nuclear Physics B, 2003, 660: 407-412
[14]
Hu N H, Wang X L. Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case. Journal of Algebra, 2007, 312: 902-929
CrossRef Google scholar
[15]
Li J B, Su Y C. Representations of the Schrödinger-Virasoro algebras. Journal of Mathematical Physics, 2008, 49: 053512
CrossRef Google scholar
[16]
Li J B, Su Y C. The derivation algebra and automorphism group of the twisted Schrödinger-Virasoro algebra. arXiv:0801.2207v1, 2008
[17]
Li J B, Su Y C. Leibniz central extension on centerless twisted Schrödinger-Virasoro algebras. Frontiers of Mathematics in China, 2008, 3(3): 337-344
CrossRef Google scholar
[18]
Li J B, Su Y C, Zhu L S. 2-cocycles of original deformative Schrödinger-Virasoro algebras. Science in China Series A: Mathematics, 2008, 51: 1989-1999
CrossRef Google scholar
[19]
Roger C, Unterberger J. The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study. Annales Henri Poincaré, 2006, 7: 1477-1529
CrossRef Google scholar
[20]
Song G A, Su Y C. Lie bialgebras of generalized-Witt type. Science in China Series A: Mathematics, 2006, 49(4): 533-544
CrossRef Google scholar
[21]
Strade H, Farnsteiner R. Modular Lie Algebras and Their Representations. A Series of Monographs and Textbooks, Pure and Applied Mathematics, Vol 116. New York: Marcel Dekker, 1988
[22]
Tan S B, Zhang X F. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. arXiv:0804.1610v2, 2008
[23]
Unterberger J. On vertex algebra representations of the Schrödinger-Virasoro algebra. arXiv:cond-mat/0703214v2, 2007

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(180 KB)

Accesses

Citations

Detail

Sections
Recommended

/