RESEARCH ARTICLE

Localization in right (∗)-serial coalgebras

  • Weili FAN ,
  • Hailou YAO
Expand
  • College of Applied Sciences, Beijing University of Technology, Beijing 100124, China

Received date: 20 Oct 2009

Accepted date: 20 Jun 2010

Published date: 05 Dec 2010

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this article, we apply the localization techniques to right (∗)-serial coalgebras and obtain some interesting results. In particular, we give a characterization of right (∗)-serial coalgebras by means of its ‘local structure’, which is the localized right (∗)-serial coalgebras, and we get a main result—the periodicity theorem.

Cite this article

Weili FAN , Hailou YAO . Localization in right (∗)-serial coalgebras[J]. Frontiers of Mathematics in China, 2010 , 5(4) : 635 -652 . DOI: 10.1007/s11464-010-0077-6

1
Abe E. Hopf Algebras. Cambridge: Cambridge University Press, 1977

2
Chin W, Montgomery S. Basic coalgebra. AMS/IP Studies in Advanced Math, 1997, 4: 41-47

3
Gabriel P. Des catégories abeliennes. Bull Soc Math France, 1962, 90: 323-448

4
Garulo G N. Representation Theory of Coalgebras. Localization in Coalgebras. Ph D Thesis. Granada: Universidad de Granada, 2006

5
Gómez-Torrecillas J, Navarro G. Serial coalgebras and their valued Gabriel quivers. J Algebra, 2008, 319: 5039-5059

DOI

6
Goodearl K R, Warfield R B. An Introduction to Noncommutative Noetherian Rings. London Math Soc Student Series 16. Cambridge: Cambridge University Press, 1989

7
Green J A. Locally finite representations. J Algebra, 1976, 41: 137-171

DOI

8
Guadra J, Gómez-Torrecillas J. Idempotents and Morita-Takeuchi theory. Comm Algebra, 2002, 30: 2405-2426

DOI

9
Guadra J, Gómez-Torrecillas J. Serial coalgebras. J Pure and Applied Algebra, 2004, 189: 89-107

DOI

10
Jara P, Merino L M, Navarro G, Ruíz J F. Localization in coalgebras, stable localizations and path coalgebras. Comm Algebra, 2006, 34: 2843-2856

DOI

11
Kosakowska J, Simson D. Hereditary coalgebras and representations of species. J Algebra, 2005, 293: 457-505

DOI

12
McConnell J C, Robson J C. Noncommutative Noetherian Rings. New York: John Wiley, 1987

13
Montgomery S. Hopf Algebras and Their Actions on Rings. MBS, No 82. Providence: Amer Math Soc, 1993

14
Nǎstǎsescu C, Torrecillas B. Torsion theories for coalgebras. J Pure and Applied Algebra, 1994, 97: 203-220

DOI

15
Navarro G. Some remarks on localization in coalgebras. Comm Algebra (in press). ArXiv.math.RA/0608425, 2007

16
Popescu N. Abelian categories with applications to rings and modules. London Mathematical Society Monographs, No 3. London-New York: Academic Press, 1973

17
Radford D E. On the structure of pointed coalgebras. J Algebra, 1982, 77: 1-14

DOI

18
Simson D. Path coalgebras of quiver with relations and a tame-wild dichotomy problem for coalgebras. Lecture Notes in Pure and Applied Mathematics, 2005, 236: 465-492

19
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969

20
Takeuchi M. Morita theorems for categories of comodules. J Fac Sci Uni Tokyo, 1977, 24: 629-644

21
Woodcock D. Some categorical remarks on the representation theory of coalgebras. Comm Algebra, 1997, 25: 2775-2794

DOI

22
Yao Hailou, Fan Weili. Finite dimensional (∗)-serial algebras. Sci China Ser A (to appear)

23
Yao Hailou, Fan Weili. (∗)-Serial coalgebras. Preprint, 2010

Options
Outlines

/