Frontiers of Mathematics in China >
Localization in right (∗)-serial coalgebras
Received date: 20 Oct 2009
Accepted date: 20 Jun 2010
Published date: 05 Dec 2010
Copyright
In this article, we apply the localization techniques to right (∗)-serial coalgebras and obtain some interesting results. In particular, we give a characterization of right (∗)-serial coalgebras by means of its ‘local structure’, which is the localized right (∗)-serial coalgebras, and we get a main result—the periodicity theorem.
Key words: Coalgebra; comodule; right (∗)-serial coalgebra; localization
Weili FAN , Hailou YAO . Localization in right (∗)-serial coalgebras[J]. Frontiers of Mathematics in China, 2010 , 5(4) : 635 -652 . DOI: 10.1007/s11464-010-0077-6
1 |
Abe E. Hopf Algebras. Cambridge: Cambridge University Press, 1977
|
2 |
Chin W, Montgomery S. Basic coalgebra. AMS/IP Studies in Advanced Math, 1997, 4: 41-47
|
3 |
Gabriel P. Des catégories abeliennes. Bull Soc Math France, 1962, 90: 323-448
|
4 |
Garulo G N. Representation Theory of Coalgebras. Localization in Coalgebras. Ph D Thesis. Granada: Universidad de Granada, 2006
|
5 |
Gómez-Torrecillas J, Navarro G. Serial coalgebras and their valued Gabriel quivers. J Algebra, 2008, 319: 5039-5059
|
6 |
Goodearl K R, Warfield R B. An Introduction to Noncommutative Noetherian Rings. London Math Soc Student Series 16. Cambridge: Cambridge University Press, 1989
|
7 |
Green J A. Locally finite representations. J Algebra, 1976, 41: 137-171
|
8 |
Guadra J, Gómez-Torrecillas J. Idempotents and Morita-Takeuchi theory. Comm Algebra, 2002, 30: 2405-2426
|
9 |
Guadra J, Gómez-Torrecillas J. Serial coalgebras. J Pure and Applied Algebra, 2004, 189: 89-107
|
10 |
Jara P, Merino L M, Navarro G, Ruíz J F. Localization in coalgebras, stable localizations and path coalgebras. Comm Algebra, 2006, 34: 2843-2856
|
11 |
Kosakowska J, Simson D. Hereditary coalgebras and representations of species. J Algebra, 2005, 293: 457-505
|
12 |
McConnell J C, Robson J C. Noncommutative Noetherian Rings. New York: John Wiley, 1987
|
13 |
Montgomery S. Hopf Algebras and Their Actions on Rings. MBS, No 82. Providence: Amer Math Soc, 1993
|
14 |
Nǎstǎsescu C, Torrecillas B. Torsion theories for coalgebras. J Pure and Applied Algebra, 1994, 97: 203-220
|
15 |
Navarro G. Some remarks on localization in coalgebras. Comm Algebra (in press). ArXiv.math.RA/0608425, 2007
|
16 |
Popescu N. Abelian categories with applications to rings and modules. London Mathematical Society Monographs, No 3. London-New York: Academic Press, 1973
|
17 |
Radford D E. On the structure of pointed coalgebras. J Algebra, 1982, 77: 1-14
|
18 |
Simson D. Path coalgebras of quiver with relations and a tame-wild dichotomy problem for coalgebras. Lecture Notes in Pure and Applied Mathematics, 2005, 236: 465-492
|
19 |
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
|
20 |
Takeuchi M. Morita theorems for categories of comodules. J Fac Sci Uni Tokyo, 1977, 24: 629-644
|
21 |
Woodcock D. Some categorical remarks on the representation theory of coalgebras. Comm Algebra, 1997, 25: 2775-2794
|
22 |
Yao Hailou, Fan Weili. Finite dimensional (∗)-serial algebras. Sci China Ser A (to appear)
|
23 |
Yao Hailou, Fan Weili. (∗)-Serial coalgebras. Preprint, 2010
|
/
〈 | 〉 |