Localization in right (*)-serial coalgebras

Weili Fan , Hailou Yao

Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 635 -652.

PDF (229KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 635 -652. DOI: 10.1007/s11464-010-0077-6
Research Article
RESEARCH ARTICLE

Localization in right (*)-serial coalgebras

Author information +
History +
PDF (229KB)

Abstract

In this article, we apply the localization techniques to right (*)-serial coalgebras and obtain some interesting results. In particular, we give a characterization of right (*)-serial coalgebras by means of its ‘local structure’, which is the localized right (*)-serial coalgebras, and we get a main result—the periodicity theorem.

Keywords

Coalgebra / comodule / right (*)-serial coalgebra / localization

Cite this article

Download citation ▾
Weili Fan, Hailou Yao. Localization in right (*)-serial coalgebras. Front. Math. China, 2010, 5(4): 635-652 DOI:10.1007/s11464-010-0077-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe E. Hopf Algebras, 1977, Cambridge: Cambridge University Press.

[2]

Chin W., Montgomery S. Basic coalgebra. AMS/IP Studies in Advanced Math, 1997, 4: 41-47.

[3]

Gabriel P. Des catégories abeliennes. Bull Soc Math France, 1962, 90: 323-448.

[4]

Garulo G. N. Representation Theory of Coalgebras. Localization in Coalgebras. Ph D Thesis, 2006, Granada: Universidad de Granada.

[5]

Gómez-Torrecillas J., Navarro G. Serial coalgebras and their valued Gabriel quivers. J Algebra, 2008, 319: 5039-5059.

[6]

Goodearl K. R., Warfield R. B. An Introduction to Noncommutative Noetherian Rings, 1989, Cambridge: Cambridge University Press.

[7]

Green J. A. Locally finite representations. J Algebra, 1976, 41: 137-171.

[8]

Guadra J., Gómez-Torrecillas J. Idempotents and Morita-Takeuchi theory. Comm Algebra, 2002, 30: 2405-2426.

[9]

Guadra J., Gómez-Torrecillas J. Serial coalgebras. J Pure and Applied Algebra, 2004, 189: 89-107.

[10]

Jara P., Merino L. M., Navarro G., Ruíz J. F. Localization in coalgebras, stable localizations and path coalgebras. Comm Algebra, 2006, 34: 2843-2856.

[11]

Kosakowska J., Simson D. Hereditary coalgebras and representations of species. J Algebra, 2005, 293: 457-505.

[12]

McConnell J. C., Robson J. C. Noncommutative Noetherian Rings, 1987, New York: John Wiley.

[13]

Montgomery S. Hopf Algebras and Their Actions on Rings, 1993, Providence: Amer Math Soc.

[14]

Năstăsescu C., Torrecillas B. Torsion theories for coalgebras. J Pure and Applied Algebra, 1994, 97: 203-220.

[15]

Navarro G. Some remarks on localization in coalgebras. Comm Algebra (in press). ArXiv.math.RA/0608425, 2007

[16]

Popescu N. Abelian categories with applications to rings and modules, 1973, London-New York: Academic Press.

[17]

Radford D. E. On the structure of pointed coalgebras. J Algebra, 1982, 77: 1-14.

[18]

Simson D. Path coalgebras of quiver with relations and a tame-wild dichotomy problem for coalgebras. Lecture Notes in Pure and Applied Mathematics, 2005, 236: 465-492.

[19]

Sweedler M. E. Hopf Algebras, 1969, New York: Benjamin.

[20]

Takeuchi M. Morita theorems for categories of comodules. J Fac Sci Uni Tokyo, 1977, 24: 629-644.

[21]

Woodcock D. Some categorical remarks on the representation theory of coalgebras. Comm Algebra, 1997, 25: 2775-2794.

[22]

Yao Hailou, Fan Weili. Finite dimensional (*)-serial algebras. Sci China Ser A (to appear)

[23]

Yao Hailou, Fan Weili. (*)-Serial coalgebras. Preprint, 2010

AI Summary AI Mindmap
PDF (229KB)

711

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/