Localization in right (?)-serial coalgebras

Weili FAN, Hailou YAO

PDF(229 KB)
PDF(229 KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 635-652. DOI: 10.1007/s11464-010-0077-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Localization in right (?)-serial coalgebras

Author information +
History +

Abstract

In this article, we apply the localization techniques to right (∗)-serial coalgebras and obtain some interesting results. In particular, we give a characterization of right (∗)-serial coalgebras by means of its ‘local structure’, which is the localized right (∗)-serial coalgebras, and we get a main result—the periodicity theorem.

Keywords

Coalgebra / comodule / right (∗)-serial coalgebra / localization

Cite this article

Download citation ▾
Weili FAN, Hailou YAO. Localization in right (∗)-serial coalgebras. Front Math Chin, 2010, 5(4): 635‒652 https://doi.org/10.1007/s11464-010-0077-6

References

[1]
Abe E. Hopf Algebras. Cambridge: Cambridge University Press, 1977
[2]
Chin W, Montgomery S. Basic coalgebra. AMS/IP Studies in Advanced Math, 1997, 4: 41-47
[3]
Gabriel P. Des catégories abeliennes. Bull Soc Math France, 1962, 90: 323-448
[4]
Garulo G N. Representation Theory of Coalgebras. Localization in Coalgebras. Ph D Thesis. Granada: Universidad de Granada, 2006
[5]
Gómez-Torrecillas J, Navarro G. Serial coalgebras and their valued Gabriel quivers. J Algebra, 2008, 319: 5039-5059
CrossRef Google scholar
[6]
Goodearl K R, Warfield R B. An Introduction to Noncommutative Noetherian Rings. London Math Soc Student Series 16. Cambridge: Cambridge University Press, 1989
[7]
Green J A. Locally finite representations. J Algebra, 1976, 41: 137-171
CrossRef Google scholar
[8]
Guadra J, Gómez-Torrecillas J. Idempotents and Morita-Takeuchi theory. Comm Algebra, 2002, 30: 2405-2426
CrossRef Google scholar
[9]
Guadra J, Gómez-Torrecillas J. Serial coalgebras. J Pure and Applied Algebra, 2004, 189: 89-107
CrossRef Google scholar
[10]
Jara P, Merino L M, Navarro G, Ruíz J F. Localization in coalgebras, stable localizations and path coalgebras. Comm Algebra, 2006, 34: 2843-2856
CrossRef Google scholar
[11]
Kosakowska J, Simson D. Hereditary coalgebras and representations of species. J Algebra, 2005, 293: 457-505
CrossRef Google scholar
[12]
McConnell J C, Robson J C. Noncommutative Noetherian Rings. New York: John Wiley, 1987
[13]
Montgomery S. Hopf Algebras and Their Actions on Rings. MBS, No 82. Providence: Amer Math Soc, 1993
[14]
Nǎstǎsescu C, Torrecillas B. Torsion theories for coalgebras. J Pure and Applied Algebra, 1994, 97: 203-220
CrossRef Google scholar
[15]
Navarro G. Some remarks on localization in coalgebras. Comm Algebra (in press). ArXiv.math.RA/0608425, 2007
[16]
Popescu N. Abelian categories with applications to rings and modules. London Mathematical Society Monographs, No 3. London-New York: Academic Press, 1973
[17]
Radford D E. On the structure of pointed coalgebras. J Algebra, 1982, 77: 1-14
CrossRef Google scholar
[18]
Simson D. Path coalgebras of quiver with relations and a tame-wild dichotomy problem for coalgebras. Lecture Notes in Pure and Applied Mathematics, 2005, 236: 465-492
[19]
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
[20]
Takeuchi M. Morita theorems for categories of comodules. J Fac Sci Uni Tokyo, 1977, 24: 629-644
[21]
Woodcock D. Some categorical remarks on the representation theory of coalgebras. Comm Algebra, 1997, 25: 2775-2794
CrossRef Google scholar
[22]
Yao Hailou, Fan Weili. Finite dimensional (∗)-serial algebras. Sci China Ser A (to appear)
[23]
Yao Hailou, Fan Weili. (∗)-Serial coalgebras. Preprint, 2010

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(229 KB)

Accesses

Citations

Detail

Sections
Recommended

/