Localization in right (?)-serial coalgebras
Weili FAN, Hailou YAO
Localization in right (?)-serial coalgebras
In this article, we apply the localization techniques to right (∗)-serial coalgebras and obtain some interesting results. In particular, we give a characterization of right (∗)-serial coalgebras by means of its ‘local structure’, which is the localized right (∗)-serial coalgebras, and we get a main result—the periodicity theorem.
Coalgebra / comodule / right (∗)-serial coalgebra / localization
[1] |
Abe E. Hopf Algebras. Cambridge: Cambridge University Press, 1977
|
[2] |
Chin W, Montgomery S. Basic coalgebra. AMS/IP Studies in Advanced Math, 1997, 4: 41-47
|
[3] |
Gabriel P. Des catégories abeliennes. Bull Soc Math France, 1962, 90: 323-448
|
[4] |
Garulo G N. Representation Theory of Coalgebras. Localization in Coalgebras. Ph D Thesis. Granada: Universidad de Granada, 2006
|
[5] |
Gómez-Torrecillas J, Navarro G. Serial coalgebras and their valued Gabriel quivers. J Algebra, 2008, 319: 5039-5059
CrossRef
Google scholar
|
[6] |
Goodearl K R, Warfield R B. An Introduction to Noncommutative Noetherian Rings. London Math Soc Student Series 16. Cambridge: Cambridge University Press, 1989
|
[7] |
Green J A. Locally finite representations. J Algebra, 1976, 41: 137-171
CrossRef
Google scholar
|
[8] |
Guadra J, Gómez-Torrecillas J. Idempotents and Morita-Takeuchi theory. Comm Algebra, 2002, 30: 2405-2426
CrossRef
Google scholar
|
[9] |
Guadra J, Gómez-Torrecillas J. Serial coalgebras. J Pure and Applied Algebra, 2004, 189: 89-107
CrossRef
Google scholar
|
[10] |
Jara P, Merino L M, Navarro G, Ruíz J F. Localization in coalgebras, stable localizations and path coalgebras. Comm Algebra, 2006, 34: 2843-2856
CrossRef
Google scholar
|
[11] |
Kosakowska J, Simson D. Hereditary coalgebras and representations of species. J Algebra, 2005, 293: 457-505
CrossRef
Google scholar
|
[12] |
McConnell J C, Robson J C. Noncommutative Noetherian Rings. New York: John Wiley, 1987
|
[13] |
Montgomery S. Hopf Algebras and Their Actions on Rings. MBS, No 82. Providence: Amer Math Soc, 1993
|
[14] |
Nǎstǎsescu C, Torrecillas B. Torsion theories for coalgebras. J Pure and Applied Algebra, 1994, 97: 203-220
CrossRef
Google scholar
|
[15] |
Navarro G. Some remarks on localization in coalgebras. Comm Algebra (in press). ArXiv.math.RA/0608425, 2007
|
[16] |
Popescu N. Abelian categories with applications to rings and modules. London Mathematical Society Monographs, No 3. London-New York: Academic Press, 1973
|
[17] |
Radford D E. On the structure of pointed coalgebras. J Algebra, 1982, 77: 1-14
CrossRef
Google scholar
|
[18] |
Simson D. Path coalgebras of quiver with relations and a tame-wild dichotomy problem for coalgebras. Lecture Notes in Pure and Applied Mathematics, 2005, 236: 465-492
|
[19] |
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
|
[20] |
Takeuchi M. Morita theorems for categories of comodules. J Fac Sci Uni Tokyo, 1977, 24: 629-644
|
[21] |
Woodcock D. Some categorical remarks on the representation theory of coalgebras. Comm Algebra, 1997, 25: 2775-2794
CrossRef
Google scholar
|
[22] |
Yao Hailou, Fan Weili. Finite dimensional (∗)-serial algebras. Sci China Ser A (to appear)
|
[23] |
Yao Hailou, Fan Weili. (∗)-Serial coalgebras. Preprint, 2010
|
/
〈 | 〉 |