Frontiers of Mathematics in China >
Eigentime identity for asymmetric finite Markov chains
Received date: 15 Dec 2009
Accepted date: 12 May 2010
Published date: 05 Dec 2010
Copyright
Two kinds of eigentime identity for asymmetric finite Markov chains are proved both in the ergodic case and the transient case.
Key words: Asymmetric Markov chain; eigenvalue; hitting time; Jordan decomposition
Hao CUI , Yong-Hua MAO . Eigentime identity for asymmetric finite Markov chains[J]. Frontiers of Mathematics in China, 2010 , 5(4) : 623 -634 . DOI: 10.1007/s11464-010-0067-8
1 |
Aldous D, Fill J. Reversible Markov Chains and Random Walks on Graphs. 2003. URL www.berkeley.edu/users/aldous/book.html
|
2 |
Aldous D, Thorisson H. Shift coupling. Stoch Proc Appl, 1993, 44: 1-14
|
3 |
Anderson W. Continuous-time Markov Chains. New York: Springer-Verlag, 1991
|
4 |
Chen G N. Matrix Theory and Applications. 2nd Ed. Beijing: Science Press, 2007 (in Chinese)
|
5 |
Chen M-F. From Markov Chains to Non-equilibrium Particle Systems. 2nd Ed. Singapore: World Scientific, 2004
|
6 |
Chen M-F. Eigenvalues, Inequalities and Ergodic Theory. New York: Springer, 2004
|
7 |
Diaconis P, Saloff-Coste L. Nash inequalities for finite Markov chains. J Theor Prob, 1996, 9: 459-510
|
8 |
Hou Z T, Guo Q F. Homogeneous Denumerable Markov Processes. Berlin: Springer, 1988
|
9 |
Kemeny J G, Snell J L, Knapp A W. Denumerable Markov Chains. New York: Springer-Verlag, 1976
|
10 |
Mao Y H. Eigentime identity for ergodic Markov chains. J Appl Probab, 2004, 41: 1071-1080
|
11 |
Mao Y H. Eigentime identity for transient Markov chains. J Math Anal Appl, 2006, 315: 415-424
|
12 |
Meyer C. Matrix Analysis and Applied Linear Algebra. Philadelphia: SIAM, 2000
|
13 |
Roberts G, Rosenthal J. Shift coupling and convergence rates of ergodic averages. Communications in Statistics-Stochastic Models, 1997, 13: 147-165
|
/
〈 | 〉 |