Eigentime identity for asymmetric finite Markov chains
Hao CUI, Yong-Hua MAO
Eigentime identity for asymmetric finite Markov chains
Two kinds of eigentime identity for asymmetric finite Markov chains are proved both in the ergodic case and the transient case.
Asymmetric Markov chain / eigenvalue / hitting time / Jordan decomposition
[1] |
Aldous D, Fill J. Reversible Markov Chains and Random Walks on Graphs. 2003. URL www.berkeley.edu/users/aldous/book.html
|
[2] |
Aldous D, Thorisson H. Shift coupling. Stoch Proc Appl, 1993, 44: 1-14
CrossRef
Google scholar
|
[3] |
Anderson W. Continuous-time Markov Chains. New York: Springer-Verlag, 1991
|
[4] |
Chen G N. Matrix Theory and Applications. 2nd Ed. Beijing: Science Press, 2007 (in Chinese)
|
[5] |
Chen M-F. From Markov Chains to Non-equilibrium Particle Systems. 2nd Ed. Singapore: World Scientific, 2004
CrossRef
Google scholar
|
[6] |
Chen M-F. Eigenvalues, Inequalities and Ergodic Theory. New York: Springer, 2004
|
[7] |
Diaconis P, Saloff-Coste L. Nash inequalities for finite Markov chains. J Theor Prob, 1996, 9: 459-510
CrossRef
Google scholar
|
[8] |
Hou Z T, Guo Q F. Homogeneous Denumerable Markov Processes. Berlin: Springer, 1988
|
[9] |
Kemeny J G, Snell J L, Knapp A W. Denumerable Markov Chains. New York: Springer-Verlag, 1976
|
[10] |
Mao Y H. Eigentime identity for ergodic Markov chains. J Appl Probab, 2004, 41: 1071-1080
CrossRef
Google scholar
|
[11] |
Mao Y H. Eigentime identity for transient Markov chains. J Math Anal Appl, 2006, 315: 415-424
CrossRef
Google scholar
|
[12] |
Meyer C. Matrix Analysis and Applied Linear Algebra. Philadelphia: SIAM, 2000
|
[13] |
Roberts G, Rosenthal J. Shift coupling and convergence rates of ergodic averages. Communications in Statistics-Stochastic Models, 1997, 13: 147-165
CrossRef
Google scholar
|
/
〈 | 〉 |