Eigentime identity for asymmetric finite Markov chains

Hao CUI, Yong-Hua MAO

PDF(158 KB)
PDF(158 KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 623-634. DOI: 10.1007/s11464-010-0067-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Eigentime identity for asymmetric finite Markov chains

Author information +
History +

Abstract

Two kinds of eigentime identity for asymmetric finite Markov chains are proved both in the ergodic case and the transient case.

Keywords

Asymmetric Markov chain / eigenvalue / hitting time / Jordan decomposition

Cite this article

Download citation ▾
Hao CUI, Yong-Hua MAO. Eigentime identity for asymmetric finite Markov chains. Front Math Chin, 2010, 5(4): 623‒634 https://doi.org/10.1007/s11464-010-0067-8

References

[1]
Aldous D, Fill J. Reversible Markov Chains and Random Walks on Graphs. 2003. URL www.berkeley.edu/users/aldous/book.html
[2]
Aldous D, Thorisson H. Shift coupling. Stoch Proc Appl, 1993, 44: 1-14
CrossRef Google scholar
[3]
Anderson W. Continuous-time Markov Chains. New York: Springer-Verlag, 1991
[4]
Chen G N. Matrix Theory and Applications. 2nd Ed. Beijing: Science Press, 2007 (in Chinese)
[5]
Chen M-F. From Markov Chains to Non-equilibrium Particle Systems. 2nd Ed. Singapore: World Scientific, 2004
CrossRef Google scholar
[6]
Chen M-F. Eigenvalues, Inequalities and Ergodic Theory. New York: Springer, 2004
[7]
Diaconis P, Saloff-Coste L. Nash inequalities for finite Markov chains. J Theor Prob, 1996, 9: 459-510
CrossRef Google scholar
[8]
Hou Z T, Guo Q F. Homogeneous Denumerable Markov Processes. Berlin: Springer, 1988
[9]
Kemeny J G, Snell J L, Knapp A W. Denumerable Markov Chains. New York: Springer-Verlag, 1976
[10]
Mao Y H. Eigentime identity for ergodic Markov chains. J Appl Probab, 2004, 41: 1071-1080
CrossRef Google scholar
[11]
Mao Y H. Eigentime identity for transient Markov chains. J Math Anal Appl, 2006, 315: 415-424
CrossRef Google scholar
[12]
Meyer C. Matrix Analysis and Applied Linear Algebra. Philadelphia: SIAM, 2000
[13]
Roberts G, Rosenthal J. Shift coupling and convergence rates of ergodic averages. Communications in Statistics-Stochastic Models, 1997, 13: 147-165
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(158 KB)

Accesses

Citations

Detail

Sections
Recommended

/