RESEARCH ARTICLE

Low-dimensional cohomology of q-deformed Heisenberg-Virasoro algebra of Hom-type

  • Yongsheng CHENG , 1,2 ,
  • Hengyun YANG 3
Expand
  • 1. Institute of Contemporary Mathematics & School of Mathematics and Information Science, Henan University, Kaifeng 475004, China
  • 2. Department of Mathematics, University of Science and Technology of China, Hefei 230026, China
  • 3. Department of Basic Sciences, Shanghai Maritime University, Shanghai 200135, China

Received date: 19 Jan 2010

Accepted date: 12 May 2010

Published date: 05 Dec 2010

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Hom-Lie algebras were introduced by J. Hartwig, D. Larsson, and S. Silvestrov as a generalized Lie algebra. When studying the homology and cohomology theory of Hom-Lie algebras, the authors find that the lowdimensional cohomology theory of Hom-Lie algebras is not well studied because of the Hom-Jacobi identity. In this paper, the authors compute the first and second cohomology groups of the q-deformed Heisenberg-Virasoro algebra of Hom-type, which will be useful to build the low-dimensional cohomology theory of Hom-Lie algebras.

Cite this article

Yongsheng CHENG , Hengyun YANG . Low-dimensional cohomology of q-deformed Heisenberg-Virasoro algebra of Hom-type[J]. Frontiers of Mathematics in China, 2010 , 5(4) : 607 -622 . DOI: 10.1007/s11464-010-0063-z

1
Arbarello E, De Concini C, Kac V G, Procesi C. Moduli spaces of curves and representation theory. Comm Math Phys, 1988, 117: 1-36

DOI

2
Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebra. J Algebra, 1988, 118: 33-45

DOI

3
Gao Y. The second Leibniz homology group for Kac-Moody Lie algebras. Bull of LMS, 2000, 32: 25-33

4
Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using σ-derivation. J Algebra, 2006, 295: 314-361

5
Jiang Q, Jiang C. Representations of the twisted Heisenberg-Virasoro algebra and the full Toroidal Lie Algebras. Algebra Colloq, 2007, 14(1): 117-134

6
Jin Q, Li X. Hom-Lie algebra structures on semisimple Lie algebras. J Algebra, 2008, 319: 1398-1408

DOI

7
Kac V, Cheung P. Quantum Calculus. Berlin: Springer-Verlag, 2002

8
Kassel C. Cyclic homology of differential operators, the Virasoro algebra and a q-analogue. Comm Math Phys, 1992, 146: 343-351

DOI

9
Larsson D, Silvestrov S D. Quasi-hom-Lie algebras, central extensions and 2-cocyclelike identities. J Algebra, 2005, 288: 321-344

DOI

10
Leger G F. Generalized derivations of Lie algebras. J Algebra, 2000, 228: 165-203

DOI

11
Li W. 2-Cocycles on the algebra of differential operators. J Algebra, 1989, 122: 64-80

DOI

12
Liu D, Zhu L. Generalized Heisenberg-Virasoro algebra. Front Math China, 2009, 4(2): 297-310

DOI

13
Loday J-L, Pirashvili T. Universal enveloping algebras of Leibniz algebras and (co)homology. Math Ann, 1993, 296: 139-158

DOI

14
Makhlouf A, Silvestrov S D. Notes on formal deformations of Hom- associative and Hom-Lie algebras. arXiv:0712.3130v1 [math.RA]

15
Scheunert M, Zhang R B. Cohomology of Lie superalgebras and their generalizations. J Math Phys, 1998, 39: 5024-5061

DOI

16
Shen R, Jiang C. The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro algebra. Comm Algebra, 2006, 34(7): 2547-2558

DOI

17
Su Y. 2-cocycles on the Lie algebras of generalized differential operators. Comm Algebra, 2002, 30: 763-782

DOI

18
Su Y. Low dimensional cohomology of general conformal algebras gcN.JMath Phys, 2004, 45: 509-524

DOI

19
Su Y, Zhao K. Second cohomology group of generalized Witt type Lie algebras and certain representations. Comm Alegrba, 2002, 30: 3285-3309

DOI

20
Yau D. Hom-algebras as deformations and homology. J Lie Theory, 2009, 19: 409-421

21
Zhang Q, Zhang Y. Derivations and extensions of Lie color algebra. Acta Math Scientia, 2008, 28B(4): 933-948

Options
Outlines

/