Frontiers of Mathematics in China >
Low-dimensional cohomology of q-deformed Heisenberg-Virasoro algebra of Hom-type
Received date: 19 Jan 2010
Accepted date: 12 May 2010
Published date: 05 Dec 2010
Copyright
Hom-Lie algebras were introduced by J. Hartwig, D. Larsson, and S. Silvestrov as a generalized Lie algebra. When studying the homology and cohomology theory of Hom-Lie algebras, the authors find that the lowdimensional cohomology theory of Hom-Lie algebras is not well studied because of the Hom-Jacobi identity. In this paper, the authors compute the first and second cohomology groups of the q-deformed Heisenberg-Virasoro algebra of Hom-type, which will be useful to build the low-dimensional cohomology theory of Hom-Lie algebras.
Yongsheng CHENG , Hengyun YANG . Low-dimensional cohomology of q-deformed Heisenberg-Virasoro algebra of Hom-type[J]. Frontiers of Mathematics in China, 2010 , 5(4) : 607 -622 . DOI: 10.1007/s11464-010-0063-z
1 |
Arbarello E, De Concini C, Kac V G, Procesi C. Moduli spaces of curves and representation theory. Comm Math Phys, 1988, 117: 1-36
|
2 |
Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebra. J Algebra, 1988, 118: 33-45
|
3 |
Gao Y. The second Leibniz homology group for Kac-Moody Lie algebras. Bull of LMS, 2000, 32: 25-33
|
4 |
Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using σ-derivation. J Algebra, 2006, 295: 314-361
|
5 |
Jiang Q, Jiang C. Representations of the twisted Heisenberg-Virasoro algebra and the full Toroidal Lie Algebras. Algebra Colloq, 2007, 14(1): 117-134
|
6 |
Jin Q, Li X. Hom-Lie algebra structures on semisimple Lie algebras. J Algebra, 2008, 319: 1398-1408
|
7 |
Kac V, Cheung P. Quantum Calculus. Berlin: Springer-Verlag, 2002
|
8 |
Kassel C. Cyclic homology of differential operators, the Virasoro algebra and a q-analogue. Comm Math Phys, 1992, 146: 343-351
|
9 |
Larsson D, Silvestrov S D. Quasi-hom-Lie algebras, central extensions and 2-cocyclelike identities. J Algebra, 2005, 288: 321-344
|
10 |
Leger G F. Generalized derivations of Lie algebras. J Algebra, 2000, 228: 165-203
|
11 |
Li W. 2-Cocycles on the algebra of differential operators. J Algebra, 1989, 122: 64-80
|
12 |
Liu D, Zhu L. Generalized Heisenberg-Virasoro algebra. Front Math China, 2009, 4(2): 297-310
|
13 |
Loday J-L, Pirashvili T. Universal enveloping algebras of Leibniz algebras and (co)homology. Math Ann, 1993, 296: 139-158
|
14 |
Makhlouf A, Silvestrov S D. Notes on formal deformations of Hom- associative and Hom-Lie algebras. arXiv:0712.3130v1 [math.RA]
|
15 |
Scheunert M, Zhang R B. Cohomology of Lie superalgebras and their generalizations. J Math Phys, 1998, 39: 5024-5061
|
16 |
Shen R, Jiang C. The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro algebra. Comm Algebra, 2006, 34(7): 2547-2558
|
17 |
Su Y. 2-cocycles on the Lie algebras of generalized differential operators. Comm Algebra, 2002, 30: 763-782
|
18 |
Su Y. Low dimensional cohomology of general conformal algebras gcN.JMath Phys, 2004, 45: 509-524
|
19 |
Su Y, Zhao K. Second cohomology group of generalized Witt type Lie algebras and certain representations. Comm Alegrba, 2002, 30: 3285-3309
|
20 |
Yau D. Hom-algebras as deformations and homology. J Lie Theory, 2009, 19: 409-421
|
21 |
Zhang Q, Zhang Y. Derivations and extensions of Lie color algebra. Acta Math Scientia, 2008, 28B(4): 933-948
|
/
〈 | 〉 |