Low-dimensional cohomology of q-deformed Heisenberg-Virasoro algebra of Hom-type

Yongsheng Cheng , Hengyun Yang

Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 607 -622.

PDF (204KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 607 -622. DOI: 10.1007/s11464-010-0063-z
Research Article
RESEARCH ARTICLE

Low-dimensional cohomology of q-deformed Heisenberg-Virasoro algebra of Hom-type

Author information +
History +
PDF (204KB)

Abstract

Hom-Lie algebras were introduced by J. Hartwig, D. Larsson, and S. Silvestrov as a generalized Lie algebra. When studying the homology and cohomology theory of Hom-Lie algebras, the authors find that the low-dimensional cohomology theory of Hom-Lie algebras is not well studied because of the Hom-Jacobi identity. In this paper, the authors compute the first and second cohomology groups of the q-deformed Heisenberg-Virasoro algebra of Hom-type, which will be useful to build the low-dimensional cohomology theory of Hom-Lie algebras.

Keywords

Hom-Lie algebra / q-deformed Heisenberg-Virasoro algebra of Hom-type / derivation / cohomology group

Cite this article

Download citation ▾
Yongsheng Cheng, Hengyun Yang. Low-dimensional cohomology of q-deformed Heisenberg-Virasoro algebra of Hom-type. Front. Math. China, 2010, 5(4): 607-622 DOI:10.1007/s11464-010-0063-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arbarello E., De Concini C., Kac V. G., Procesi C. Moduli spaces of curves and representation theory. Comm Math Phys, 1988, 117: 1-36.

[2]

Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebra. J Algebra, 1988, 118: 33-45.

[3]

Gao Y. The second Leibniz homology group for Kac-Moody Lie algebras. Bull of LMS, 2000, 32: 25-33.

[4]

Hartwig J., Larsson D., Silvestrov S. Deformations of Lie algebras using σ-derivation. J Algebra, 2006, 295: 314-361.

[5]

Jiang Q., Jiang C. Representations of the twisted Heisenberg-Virasoro algebra and the full Toroidal Lie Algebras. Algebra Colloq, 2007, 14(1): 117-134.

[6]

Jin Q., Li X. Hom-Lie algebra structures on semisimple Lie algebras. J Algebra, 2008, 319: 1398-1408.

[7]

Kac V., Cheung P. Quantum Calculus, 2002, Berlin: Springer-Verlag.

[8]

Kassel C. Cyclic homology of differential operators, the Virasoro algebra and a q-analogue. Comm Math Phys, 1992, 146: 343-351.

[9]

Larsson D., Silvestrov S. D. Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities. J Algebra, 2005, 288: 321-344.

[10]

Leger G. F. Generalized derivations of Lie algebras. J Algebra, 2000, 228: 165-203.

[11]

Li W. 2-Cocycles on the algebra of differential operators. J Algebra, 1989, 122: 64-80.

[12]

Liu D., Zhu L. Generalized Heisenberg-Virasoro algebra. Front Math China, 2009, 4(2): 297-310.

[13]

Loday J. -L., Pirashvili T. Universal enveloping algebras of Leibniz algebras and (co)homology. Math Ann, 1993, 296: 139-158.

[14]

Makhlouf A, Silvestrov S D. Notes on formal deformations of Hom- associative and Hom-Lie algebras. arXiv:0712.3130v1 [math.RA]

[15]

Scheunert M., Zhang R. B. Cohomology of Lie superalgebras and their generalizations. J Math Phys, 1998, 39: 5024-5061.

[16]

Shen R., Jiang C. The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro algebra. Comm Algebra, 2006, 34(7): 2547-2558.

[17]

Su Y. 2-cocycles on the Lie algebras of generalized differential operators. Comm Algebra, 2002, 30: 763-782.

[18]

Su Y. Low dimensional cohomology of general conformal algebras gcN. J Math Phys, 2004, 45: 509-524.

[19]

Su Y., Zhao K. Second cohomology group of generalized Witt type Lie algebras and certain representations. Comm Alegrba, 2002, 30: 3285-3309.

[20]

Yau D. Hom-algebras as deformations and homology. J Lie Theory, 2009, 19: 409-421.

[21]

Zhang Q., Zhang Y. Derivations and extensions of Lie color algebra. Acta Math Scientia, 2008, 28B(4): 933-948.

AI Summary AI Mindmap
PDF (204KB)

1201

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/