Generalized Drazin spectrum of upper triangular matrices in Banach algebras

Yongfeng PANG, Dong MA, Danli ZHANG

PDF(548 KB)
PDF(548 KB)
Front. Math. China ›› 2023, Vol. 18 ›› Issue (6) : 431-440. DOI: 10.3868/s140-DDD-023-0030-x
RESEARCH ARTICLE

Generalized Drazin spectrum of upper triangular matrices in Banach algebras

Author information +
History +

Abstract

Let A be a Banach algebra with unit e and a,b,cA,Mc=(ac0b)M2(A). The concepts of left and right generalized Drazin invertible of elements in a Banach algebra are proposed. A generalized Drazin spectrum of α is defined by σgD(α)={λC:αλeisnotgeneralizedDrazininvertible}. It is shown that

           σgD(a)σgD(b)=σgD(Mc)W2,

where Wg is a union of certain holes σgD and WgσgD(a)σgD(b), or more finely WgσrgD(a)σlgD(b). In addition, some properties of generalized Drazin spectrum of elements in a Banach algebra are studied.

Keywords

Banach algebra / generalized Drazin inverse / generalized Drazin spectrum / upper / triangular matrices

Cite this article

Download citation ▾
Yongfeng PANG, Dong MA, Danli ZHANG. Generalized Drazin spectrum of upper triangular matrices in Banach algebras. Front. Math. China, 2023, 18(6): 431‒440 https://doi.org/10.3868/s140-DDD-023-0030-x

References

[1]
Cao X H, Guo M Z, Meng B. Drazin spectrum and Weyl’s theorem for operator matrices. J Math Res Exposition 2006; 26(3): 413–422
[2]
CaradusS RPfaffenbergerW EYoodB. Calkin Algebras and Algebras of Operators on Banach Spaces. Lecture Notes in Pure and Applied Mathematics, Vol 9. New York: Marcel Dekker, 1974
[3]
Castro González N, Koliha J J. New additive results for the g-Drazin inverse. Proc Roy Soc Edinburgh Sect A 2004; 134(6): 1085–1097
[4]
Drazin M P. Pseudo-inverses in associative rings and semigroups. Amer Math Monthly 1958; 65: 506–514
[5]
Duggal B P. Upper triangular operator matrices, SVEP and Browder, Weyl theorems. Integral Equations Operator Theory 2009; 63(1): 17–28
[6]
Han J K, Lee H Y, Lee W Y. Invertible completions of 2×2 upper triangular operator matrices. Proc Amer Math Soc 2000; 128(1): 119–123
[7]
Koliha J J. A generalized Drazin inverse. Glasgow Math J 1996; 38(3): 367–381
[8]
Lin L Q. The filling-in-holes of spectra of upper triangular matrices over Banach algebras. J Xiamen Univ (Nat Sci) 2012; 51(2): 153–156
[9]
MurphyG J. C*-algebras and Operator Theory. Boston, MA: Academic Press, 1990
[10]
Zhang H Y, Zhang X H, Du H K. Drazin spectra of 2×2 upper triangular operator matrices. Acta Math Sci Ser A (Chin Ed) 2009; 29(2): 278–282
[11]
Zhang S F, Zhong H J, Jiang Q F. Drazin spectrum of operator matrices on the Banach space. Linear Algebra Appl 2008; 429(8/9): 2067–2075
[12]
Zhang S F, Zhong H J, Lin L Q. Generalized Drazin spectrum of operator matrices. Appl Math J Chinese Univ Ser B 2014; 29(2): 162–170

RIGHTS & PERMISSIONS

2023 Higher Education Press 2023
AI Summary AI Mindmap
PDF(548 KB)

Accesses

Citations

Detail

Sections
Recommended

/