Convergence analysis of an infeasible quasi-Newton bundle method for nonsmooth convex programming
Jie SHEN , Fangfang GUO , Liping PANG
Front. Math. China ›› 2023, Vol. 18 ›› Issue (5) : 367 -380.
Convergence analysis of an infeasible quasi-Newton bundle method for nonsmooth convex programming
By utilizing the improvement function, we change the nonsmooth convex constrained optimization into an unconstrained optimization, and construct an infeasible quasi-Newton bundle method with proximal form. It should be noted that the objective function being minimized in unconstrained optimization subproblem may vary along the iterations (it does not change if the null step is made, otherwise it is updated to a new function). It is necessary to make some adjustment in order to obtain the convergence result. We employ the main idea of infeasible bundle method of Sagastizàbal and Solodov, and under the circumstances that each iteration point may be infeasible for primal problem, we prove that each cluster point of the sequence generated by the proposed algorithm is the optimal solution to the original problem. Furthermore, for BFGS quasi-Newton algorithm with strong convex objective function, we obtain the condition which guarantees the boundedness of quasi-Newton matrices and the R-linear convergence of the iteration points.
Non-smooth optimization / convex constraint / improvement function / bundle method / quasi-Newton direction
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
Higher Education Press 2023
/
| 〈 |
|
〉 |