A parametric family of quartic Thue equations

Zhigang LI, Pingzhi YUAN

PDF(626 KB)
PDF(626 KB)
Front. Math. China ›› 2023, Vol. 18 ›› Issue (3) : 147-163. DOI: 10.3868/s140-DDD-023-0016-x
RESEARCH ARTICLE
RESEARCH ARTICLE

A parametric family of quartic Thue equations

Author information +
History +

Abstract

In this paper,we give all primitive solutions of a parameterized family of quartic Thue equations:

      x44cx3y+(6c+2)x2y2+4cxy3+y4=96c+169,c>0.

Keywords

Extension of classical Legendre's theorem / Baker-Wüstholz's theorem / Thue equation

Cite this article

Download citation ▾
Zhigang LI, Pingzhi YUAN. A parametric family of quartic Thue equations. Front. Math. China, 2023, 18(3): 147‒163 https://doi.org/10.3868/s140-DDD-023-0016-x

References

[1]
Baker A. Contributions to the theory of Diophantine equations I, on the representation of integers by binary forms. Philos Thans Roy Soc London Ser A 1968; 263: 273–291
[2]
Baker A, Davenport H. The equation 3x2−2=y2 and 8x2−7=z2. Quart J Math Oxford 1969; 20(2): 129–137
[3]
Baker A, Wüstholz G. Logarithmic forms and group varieties. J Reine Angew Math 1993; 442: 19–62
[4]
Bennett M A. On the number of solutions of simultaneous Pell equations. J. Reine Angew Math 1998; 498: 173–199
[5]
Bilu Y, Hanrot G. Solving Thue equations of high degree. J Number Theory 1996; 60: 373–392
[6]
Dujella A, Pethö A. Generalization of a theorem of Baker and Davenport. Quart J Math Oxford 1998; 49: 291–306
[7]
Dujella A, Jadrijević B. A parametric family of quartic Thue equations. Acta Arith 2002; 101: 159–170
[8]
Dujella A. A family of quartic Thue inequalities. Acta Arith 2004; 111: 61–76
[9]
Dujella A. Continued fractions and RSA with small secret exponent. Tatra Mt Math Publ 2004; 29: 101–112
[10]
Fatou P. Sur l’approximation des incommenurables et les series trigonometriques. C R Acad Sci Paris 1904; 139: 1019–1021
[11]
GaálI. Diophantine Equations and Power Integral Bases: New computational Methods. New York: Springer-Verlag, 2002
[12]
Heuberger C, Pethö A, Tichy R F. Complete solution of parametrized Thue equations. Acta Math Inform Univ Ostraviensis 1998; 6: 93–113
[13]
HuaL K. Introduction to Number Theory. New York: Springer, 1982
[14]
KeZSunQ. Talking about Indeterminate Equations. New York: Shanghai Educational Publishing House, 1980
[15]
Pethö A, Schulenberg R. Effectives Lösen von Thue Gleichungen. Publ Math Debrecen 1987; 34: 189–196
[16]
Thomas E. Complete solutions to a family of cubic Diophantine equations. J Number Theory 1990; 34: 235–250
[17]
Thue A. Über Annäherungswerte algebraischer Zahlen. J Reine Angew Math 1909; 135: 284–305
[18]
Tzanakis N, de Weger B M M. On the Practical Solution of the Thue Equation. J Number Theory 1989; 31: 99–132
[19]
Tzanakis N. Explicit solution of a class of quartic Thue equations. Acta Arith 1993; 64: 271–283
[20]
Worley R T. Estimating |α−p/q|. J Austral Math Soc 1981; 31: 202–206

RIGHTS & PERMISSIONS

2023 Higher Education Press 2023
AI Summary AI Mindmap
PDF(626 KB)

Accesses

Citations

Detail

Sections
Recommended

/