A parametric family of quartic Thue equations

Zhigang LI , Pingzhi YUAN

Front. Math. China ›› 2023, Vol. 18 ›› Issue (3) : 147 -163.

PDF (626KB)
Front. Math. China ›› 2023, Vol. 18 ›› Issue (3) : 147 -163. DOI: 10.3868/s140-DDD-023-0016-x
RESEARCH ARTICLE
RESEARCH ARTICLE

A parametric family of quartic Thue equations

Author information +
History +
PDF (626KB)

Abstract

In this paper,we give all primitive solutions of a parameterized family of quartic Thue equations:

      x44cx3y+(6c+2)x2y2+4cxy3+y4=96c+169,c>0.

Keywords

Extension of classical Legendre's theorem / Baker-Wüstholz's theorem / Thue equation

Cite this article

Download citation ▾
Zhigang LI, Pingzhi YUAN. A parametric family of quartic Thue equations. Front. Math. China, 2023, 18(3): 147-163 DOI:10.3868/s140-DDD-023-0016-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baker A. Contributions to the theory of Diophantine equations I, on the representation of integers by binary forms. Philos Thans Roy Soc London Ser A 1968; 263: 273–291

[2]

Baker A, Davenport H. The equation 3x2−2=y2 and 8x2−7=z2. Quart J Math Oxford 1969; 20(2): 129–137

[3]

Baker A, Wüstholz G. Logarithmic forms and group varieties. J Reine Angew Math 1993; 442: 19–62

[4]

Bennett M A. On the number of solutions of simultaneous Pell equations. J. Reine Angew Math 1998; 498: 173–199

[5]

Bilu Y, Hanrot G. Solving Thue equations of high degree. J Number Theory 1996; 60: 373–392

[6]

Dujella A, Pethö A. Generalization of a theorem of Baker and Davenport. Quart J Math Oxford 1998; 49: 291–306

[7]

Dujella A, Jadrijević B. A parametric family of quartic Thue equations. Acta Arith 2002; 101: 159–170

[8]

Dujella A. A family of quartic Thue inequalities. Acta Arith 2004; 111: 61–76

[9]

Dujella A. Continued fractions and RSA with small secret exponent. Tatra Mt Math Publ 2004; 29: 101–112

[10]

Fatou P. Sur l’approximation des incommenurables et les series trigonometriques. C R Acad Sci Paris 1904; 139: 1019–1021

[11]

GaálI. Diophantine Equations and Power Integral Bases: New computational Methods. New York: Springer-Verlag, 2002

[12]

Heuberger C, Pethö A, Tichy R F. Complete solution of parametrized Thue equations. Acta Math Inform Univ Ostraviensis 1998; 6: 93–113

[13]

HuaL K. Introduction to Number Theory. New York: Springer, 1982

[14]

KeZSunQ. Talking about Indeterminate Equations. New York: Shanghai Educational Publishing House, 1980

[15]

Pethö A, Schulenberg R. Effectives Lösen von Thue Gleichungen. Publ Math Debrecen 1987; 34: 189–196

[16]

Thomas E. Complete solutions to a family of cubic Diophantine equations. J Number Theory 1990; 34: 235–250

[17]

Thue A. Über Annäherungswerte algebraischer Zahlen. J Reine Angew Math 1909; 135: 284–305

[18]

Tzanakis N, de Weger B M M. On the Practical Solution of the Thue Equation. J Number Theory 1989; 31: 99–132

[19]

Tzanakis N. Explicit solution of a class of quartic Thue equations. Acta Arith 1993; 64: 271–283

[20]

Worley R T. Estimating |α−p/q|. J Austral Math Soc 1981; 31: 202–206

RIGHTS & PERMISSIONS

Higher Education Press 2023

AI Summary AI Mindmap
PDF (626KB)

470

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/