Diophantine inequalities over Piatetski-Shapiro primes

Jing HUANG, Wenguang ZHAI, Deyu ZHANG

PDF(342 KB)
PDF(342 KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (3) : 749-770. DOI: 10.1007/s11464-021-0916-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Diophantine inequalities over Piatetski-Shapiro primes

Author information +
History +

Abstract

Let c>1 and 0<γ<1: We study the solubility of the Diophantine inequality |p1c+p2c++pscN|<(logN)1 in Piatetski-Shapiro primes p1,p2, .., ps of the form pj=[mγ] for some m, and improve the previous results in the cases s = 2, 3, 4.

Keywords

Diophantine inequalities / Piatetski-Shapiro primes / exponential sums / additive problems

Cite this article

Download citation ▾
Jing HUANG, Wenguang ZHAI, Deyu ZHANG. Diophantine inequalities over Piatetski-Shapiro primes. Front. Math. China, 2021, 16(3): 749‒770 https://doi.org/10.1007/s11464-021-0916-7

References

[1]
Baker R C, Harman G, Rivat J. Primes of the form [nc]. J Number Theory, 1995, 50: 261–277
CrossRef Google scholar
[2]
Baker R C,Weingartner A. Some applications of the double large sieve. Monatsh Math, 2013, 170: 261–304
CrossRef Google scholar
[3]
Baker R C, Weingartner A. A ternary Diophantine inequality over primes. Acta Arith, 2014, 162: 159–196
CrossRef Google scholar
[4]
Cai Y C. A Diophantine inequality with prime variables. Acta Math Sinica (Chin Ser), 1996, 39: 733–742 (in Chinese)
[5]
Cai Y C. On a Diophantine inequality involving prime numbers III. Acta Math Sin (Engl Ser), 1999, 15: 387–394
CrossRef Google scholar
[6]
Cai Y C. A ternary Diophantine inequality involving primes. Int J Number Theory, 2018, 14: 2257–2268
CrossRef Google scholar
[7]
Cao X D, Zhai W G. A Diophantine inequality with prime numbers. Acta Math Sinica (Chin Ser), 2002, 45: 361–370 (in Chinese)
[8]
Garaev M Z. On the Waring-Goldbach problem with small non-integer exponent. Acta Arith, 2003, 108: 297–302
CrossRef Google scholar
[9]
Graham S W, Kolesnik G. Van der Corput's Method of Exponential Sums. London Math Soc Lecture Note Ser, 126. Cambridge: Cambridge Univ Press, 1991
CrossRef Google scholar
[10]
Han X, Liu H F, Zhang D Y. A system of two Diophantine inequalities with primes. J Math, 2021, Art ID: 6613947 (12 pp)
CrossRef Google scholar
[11]
Harman G. The values of ternary quadratic forms at prime arguments. Mathematika, 2004, 51: 83–96
CrossRef Google scholar
[12]
Heath-Brown D R. The Piatetski-Shapiro prime number theorem. J Number Theory, 1983, 16: 242–266
CrossRef Google scholar
[13]
Jia C H. The distribution of square-free number (II). Sci China Ser A, 1992, 22(8): 812–827 (in Chinese)
CrossRef Google scholar
[14]
Jia C H. On Piatetski-Shapiro prime number theorem II. Sci China Ser A, 1993, 36: 913–926
[15]
Jia C H. On Piatetski-Shapiro prime number theorem. Chin Ann Math Ser B, 1994, 15: 9–22
[16]
Kolesnik G A. The distribution of primes in sequences of the form [nc]: Mat Zametki, 1967, 2: 117–128
CrossRef Google scholar
[17]
Kolesnik G A. Primes of the form [nc]: Pacific J Math, 1985, 118: 437–447
CrossRef Google scholar
[18]
Kumchev A. A Diophantine inequality involving prime powers. Acta Arith, 1999, 89: 311–330
CrossRef Google scholar
[19]
Kumchev A. On the distribution of prime numbers of the form [nc]: Glasg Math J, 1999, 41: 85–102
CrossRef Google scholar
[20]
Kumchev A, Laporta M B S. On a binary Diophantine inequality involving prime pow-ers. In: Number Theory for the Millennium II (Urbana, IL, 2000). Wellesley: A K Peters, 2002, 307–329
[21]
Kumchev A, Nedeva T. On an equation with prime numbers. Acta Arith, 1998, 83: 117–126
CrossRef Google scholar
[22]
Kumchev A, Petrov Z. A hybrid of two theorems of Piatetski-Shapiro. Monatsh Math, 2019, 189: 355–376
CrossRef Google scholar
[23]
Li S H, Cai Y C. On a Diophantine inequality involving prime numbers. Ramanujan J, 2020, 52: 163–174
CrossRef Google scholar
[24]
Li T Y, Liu H F. Diophantine approximation over Piatetski-Shapiro primes. J Number Theory, 2020, 211: 184–198
CrossRef Google scholar
[25]
Liu H F. Diophantine approximation with one prime, two squares of primes and powers of two. Ramanujan J, 2020, 51: 85–97
CrossRef Google scholar
[26]
Liu H F, Huang J. Diophantine approximation with mixed powers of primes. Taiwanese J Math, 2019, 23: 1073–1090
CrossRef Google scholar
[27]
Liu H Q. On the number of abelian groups of a given order. Acta Arith, 1991, 59: 261–277
CrossRef Google scholar
[28]
Liu H Q, Rivat J. On the Piatetski-Shapiro prime number theorem. Bull Lond Math Soc, 1992, 24: 143–147
CrossRef Google scholar
[29]
Piatetski-Shapiro I I. On a variant of the Waring-Goldbach problem. Mat Sbornik N S, 1952, 30: 105–120
[30]
Piatetski-Shapiro I I. On the distribution of prime numbers in sequences of the form [f(n)]: Mat Sbornik N S, 1953, 33: 559–566
[31]
Rivat J, Sargos P. Nombres premiers de la forme [nc]: Canad J Math, 2001, 53: 414–433
CrossRef Google scholar
[32]
Rivat J, Wu J. Prime numbers of the form [nc]: Glasg Math J, 2001, 43: 237–254
CrossRef Google scholar
[33]
Sargos P. Points entiers au voisinage d'une courbe, sommes trigonometriques courtes et paires d'exposants. Proc Lond Math Soc, 1995, 70: 285–312
CrossRef Google scholar
[34]
Tolev D I. On a Diophantine inequality involving prime numbers. Acta Arith, 1992, 61: 289–306
CrossRef Google scholar
[35]
Vaughan R C. Diophantine inequality by prime numbers I. Proc Lond Math Soc, 1974, 28: 373–384
CrossRef Google scholar
[36]
Vaughan R C. Diophantine inequality by prime numbers II. Proc Lond Math Soc, 1974, 28: 385–401
CrossRef Google scholar
[37]
Vaughan R C. Diophantine inequality by prime numbers III. Proc Lond Math Soc, 1976, 33: 177–192
CrossRef Google scholar
[38]
Zhai W G, Cao X D. On a Diophantine inequality over primes. Adv Math (China), 2003, 32: 63–73
[39]
Zhai W G, Cao X D. On a Diophantine inequality over primes II. Monatsh Math, 2007, 150: 173–179
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(342 KB)

Accesses

Citations

Detail

Sections
Recommended

/