Commuting variety of Witt algebra

Yu-Feng YAO, Hao CHANG

PDF(130 KB)
PDF(130 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (5) : 1179-1187. DOI: 10.1007/s11464-018-0725-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Commuting variety of Witt algebra

Author information +
History +

Abstract

Let g= W1 be the Witt algebra over an algebraically closed field k of characteristic p >3, and let C (g) = {(x, y) ∈g ×g | [x, y] = 0}be the commuting variety of g. In contrast with the case of classical Lie algebras of P. Levy [J. Algebra, 2002, 250: 473–484], we show that the variety C (g) is reducible, and not equidimensional. Irreducible components of C (g) and their dimensions are precisely given. As a consequence, the variety C (g) is not normal.

Keywords

Witt algebra / irreducible component / dimension / commuting variety

Cite this article

Download citation ▾
Yu-Feng YAO, Hao CHANG. Commuting variety of Witt algebra. Front. Math. China, 2018, 13(5): 1179‒1187 https://doi.org/10.1007/s11464-018-0725-9

References

[1]
Chang H J. UberWittsche Lie-Ringe. Abh Math Semin Univ Hambg, 1941, 14: 151–184
CrossRef Google scholar
[2]
Demushkin S P. Cartan subalgebras of simple Lie p-algebras Wn and Sn. Sibirsk Mat Zh, 1970, 11(2): 310–325
CrossRef Google scholar
[3]
Humphreys J. Linear Algebraic Groups. Grad Texts in Math, Vol 21. New York: Springer-Verlag, 1975
CrossRef Google scholar
[4]
Levy P. Commuting varieties of Lie algebras over fields of prime characteristic. J Algebra, 2002, 250: 473–484
CrossRef Google scholar
[5]
Mygind M. Orbit closure in the Witt algebra and its dual space. J Algebra Appl, 2014, 13(5): 1350146
CrossRef Google scholar
[6]
Ree R. On generalized Witt algebras. Trans Amer Math Soc, 1956, 83: 510–546
CrossRef Google scholar
[7]
Richardson R W. Commuting varieties of semisimple Lie algebras and algebraic groups. Compos Math, 1979, 38: 311–327
[8]
Strade H, Farnsteiner R. Modular Lie Algebras and Their Representations. Monographs and Textbooks in Pure and Applied Mathematics, Vol 116. New York: Marcel Dekker Inc, 1988
[9]
Tauvel P, Yu R. Lie Algebras and Algebraic Groups. Springer Monogr Math. Berlin: Springer, 2005
[10]
Wilson R. Automorphisms of graded Lie algebras of Cartan type. Comm Algebra, 1975, 3(7): 591–613
CrossRef Google scholar
[11]
Yao Y-F, Chang H. The nilpotent commuting variety of the Witt algebra. J Pure Appl Algebra, 2014, 218(10): 1783–1791
CrossRef Google scholar
[12]
Yao Y-F, Shu B. Nilpotent orbits in the Witt algebra W1. Comm Algebra, 2011, 39(9): 3232–3241
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(130 KB)

Accesses

Citations

Detail

Sections
Recommended

/