De Lellis-Topping type inequalities on smooth metric measure spaces

Meng MENG , Shijin ZHANG

Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 147 -160.

PDF (160KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 147 -160. DOI: 10.1007/s11464-017-0670-z
RESEARCH ARTICLE
RESEARCH ARTICLE

De Lellis-Topping type inequalities on smooth metric measure spaces

Author information +
History +
PDF (160KB)

Abstract

We obtain some De Lellis-Topping type inequalities on the smooth metric measure spaces, some of them are as generalization of De Lellis-Topping type inequality that was proved by X. Cheng [Ann. Global Anal. Geom., 2013, 43: 153–160].

Keywords

De Lellis-Topping type inequality / Bakry-Émery Ricci curvature / smooth metric measure space

Cite this article

Download citation ▾
Meng MENG, Shijin ZHANG. De Lellis-Topping type inequalities on smooth metric measure spaces. Front. Math. China, 2018, 13(1): 147-160 DOI:10.1007/s11464-017-0670-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheng X. A generalization of almost-Schur lemma for closed Riemannian manifolds. Ann Global Anal Geom, 2013, 43: 153–160

[2]

Chow B, Lu P, Ni L. Hamilton’s Ricci Flow. Grad Stud Math, Vol 77. Beijing/Providence: Science Press/Amer Math Soc, 2006

[3]

De Lellis C, Topping P M. Almost-Schur lemma. Calc Var Partial Differential Equations, 2012, 43: 347–354

[4]

Ge Y X, Wang G F. An almost Schur theorem on 4-dimensional manifolds. Proc Amer Math Soc, 2012, 140: 1041–1044

[5]

Ge Y X, Wang G F. A new conformal invariant on 3-dimensional manifolds. Adv Math, 2013, 249: 131–160

[6]

Pohozaev S. On the eigenfunctions of the equation Δuf(u) = 0. Soviet Math Dokl, 1965, 6: 1408–1411

[7]

Schoen R. The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation. Comm Pure Appl Math, 1988, 41: 317–392

[8]

Wu J Y. De Lellis-Topping type inequalities for smooth metric measure spaces. Geom Dedicata, 2014, 169: 273–281

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (160KB)

659

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/