De Lellis-Topping type inequalities on smooth metric measure spaces

Meng MENG, Shijin ZHANG

PDF(160 KB)
PDF(160 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 147-160. DOI: 10.1007/s11464-017-0670-z
RESEARCH ARTICLE
RESEARCH ARTICLE

De Lellis-Topping type inequalities on smooth metric measure spaces

Author information +
History +

Abstract

We obtain some De Lellis-Topping type inequalities on the smooth metric measure spaces, some of them are as generalization of De Lellis-Topping type inequality that was proved by X. Cheng [Ann. Global Anal. Geom., 2013, 43: 153–160].

Keywords

De Lellis-Topping type inequality / Bakry-Émery Ricci curvature / smooth metric measure space

Cite this article

Download citation ▾
Meng MENG, Shijin ZHANG. De Lellis-Topping type inequalities on smooth metric measure spaces. Front. Math. China, 2018, 13(1): 147‒160 https://doi.org/10.1007/s11464-017-0670-z

References

[1]
Cheng X. A generalization of almost-Schur lemma for closed Riemannian manifolds. Ann Global Anal Geom, 2013, 43: 153–160
CrossRef Google scholar
[2]
Chow B, Lu P, Ni L. Hamilton’s Ricci Flow. Grad Stud Math, Vol 77. Beijing/Providence: Science Press/Amer Math Soc, 2006
[3]
De Lellis C, Topping P M. Almost-Schur lemma. Calc Var Partial Differential Equations, 2012, 43: 347–354
CrossRef Google scholar
[4]
Ge Y X, Wang G F. An almost Schur theorem on 4-dimensional manifolds. Proc Amer Math Soc, 2012, 140: 1041–1044
CrossRef Google scholar
[5]
Ge Y X, Wang G F. A new conformal invariant on 3-dimensional manifolds. Adv Math, 2013, 249: 131–160
CrossRef Google scholar
[6]
Pohozaev S. On the eigenfunctions of the equation Δu+λf(u) = 0. Soviet Math Dokl, 1965, 6: 1408–1411
[7]
Schoen R. The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation. Comm Pure Appl Math, 1988, 41: 317–392
CrossRef Google scholar
[8]
Wu J Y. De Lellis-Topping type inequalities for smooth metric measure spaces. Geom Dedicata, 2014, 169: 273–281
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(160 KB)

Accesses

Citations

Detail

Sections
Recommended

/