On duality preservability of Auslander-Reiten quivers of derived categories and cluster categories

Fang LI , Lingyu WAN

Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 957 -984.

PDF (239KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 957 -984. DOI: 10.1007/s11464-016-0559-2
RESEARCH ARTICLE
RESEARCH ARTICLE

On duality preservability of Auslander-Reiten quivers of derived categories and cluster categories

Author information +
History +
PDF (239KB)

Abstract

We give sufficient conditions and necessary conditions on duality preservability of Auslander-Reiten quivers of derived categories and cluster categories over hereditary algebras. Meantime, we characterize the condition of generalized path algebras as cleft extensions of path algebras.

Keywords

Dual quiver / Auslander-Reiten quiver / derived category / cluster category

Cite this article

Download citation ▾
Fang LI, Lingyu WAN. On duality preservability of Auslander-Reiten quivers of derived categories and cluster categories. Front. Math. China, 2016, 11(4): 957-984 DOI:10.1007/s11464-016-0559-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auslander M, Reiten I, Smalo S O. Representation Theory of Artin Algebras. Cambridge Stud Adv Math, Vol 36. Cambridge: Cambridge Univ Press, 1997

[2]

Demonet L. Skew group algebras of path algebras and preprojective algebras. 2009, arXiv: 0902.1390

[3]

Happel D. Triangulated Categories in the Representation of Finite Dimensional Algebras. London Math Soc Lecture Note Ser, Vol 119. Cambridge: Cambridge Univ Press, 1988

[4]

Hou B, Yang S. Skew group algebras of deformed preprojective algebras. J Algebra, 2011, 332(1): 209–228

[5]

Hubery A W. Representations of Quivers Respecting a Quiver Automorphism and a Theorem of Kac. Ph D Thesis, The University of Leeds, 2002

[6]

Keller B. Cluster algebras and cluster categories. Bull Iranian Math Soc, 2011, 37: 187–234

[7]

Li F. Characterization of left artinian algebras through pseudo path algebras. J Aust Math Soc, 2007, 83(03): 385–416

[8]

Li F. Modulation and natural valued quiver of an algebra. Pacific J Math,2012, 256(1): 105–128

[9]

Li F, Chen L L. The natural quiver of an artinian algebra. Algebr Represent Theory, 2010, 13(5): 623–636

[10]

Li F, Lin Z Z. Approach to artinian algebras via natural quivers. Trans Amer Math Soc, 2012, 364(3): 1395–1411

[11]

Reiten I, Riedtmann C. Skew group algebras in the representation theory of artin algebras. J Algebra, 1985, 92(1): 224–282

[12]

Zhang M. The dual quiver of the Auslander-Reiten quiver of path algebras. Algebr Represent Theory, 2012, 15(2): 203–210

[13]

Zhang M, Li F. Representations of skew group algebras induced from isomorphically invariant modules over path algebras. J Algebra, 2009, 321(2): 567–581

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (239KB)

997

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/