Integrable discretizations of the Dym equation

Bao-Feng FENG, Jun-ichi INOGUCHI, Kenji KAJIWARA, Ken-ichi MARUNO, Yasuhiro OHTA

PDF(115 KB)
PDF(115 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1017-1029. DOI: 10.1007/s11464-013-0321-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Integrable discretizations of the Dym equation

Author information +
History +

Abstract

Integrable discretizations of the complex and real Dym equations are proposed. N-soliton solutions for both semi-discrete and fully discrete analogues of the complex and real Dym equations are also presented.

Keywords

Dym equation / integrable discretization / N-soliton solution

Cite this article

Download citation ▾
Bao-Feng FENG, Jun-ichi INOGUCHI, Kenji KAJIWARA, Ken-ichi MARUNO, Yasuhiro OHTA. Integrable discretizations of the Dym equation. Front Math Chin, 2013, 8(5): 1017‒1029 https://doi.org/10.1007/s11464-013-0321-y

References

[1]
Dmitrieva L A.N-loop solitons and their link with the complex Harry Dym equation. J Phys A: Math Gen, 1994, 27: 8197-8205
CrossRef Google scholar
[2]
Feng B-F, Inoguchi J, Kajiwara K, Maruno K, Ohta Y. Discrete integrable systems and hodograph transformations arising from motions of discrete plane curves. J Phys A: Math Theor, 2011, 44: 395201
CrossRef Google scholar
[3]
FengB-F,Maruno K, Ohta Y. A self-adaptive moving mesh method for the Camassa- Holm equation. J Comp Appl Math, 2010, 235: 229-243
CrossRef Google scholar
[4]
Goldstein R E, Petrich D M. The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane. Phys Rev Lett, 1991, 67: 3203-3206
CrossRef Google scholar
[5]
Hereman W, Banerjee P P, Chatterjee M R. Derivation and implicit solution of the Harry Dym equation and its connections with the Korteweg-de Vries equation. J Phys A: Math Gen, 1989, 22: 241-255
CrossRef Google scholar
[6]
Inoguchi J, Kajiwara K, Matsuura N, Ohta Y.Motion and Bäcklund transformations of discrete plane curves. Kyushu J Math, 2012, 66: 303-324
CrossRef Google scholar
[7]
Inoguchi J, Kajiwara K, Matsuura N, Ohta Y. Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves. J Phys A: Math Theor, 2012, 45: 045206
CrossRef Google scholar
[8]
Ishimori Y.A relationship between the Ablowitz-Kaup-Newell-Segur and Wadati- Konno-Ichikawa schemes of the inverse scattering method. J Phys Soc Jpn, 1982, 51: 3036-3041
CrossRef Google scholar
[9]
Kadanoff L P.Exact solutions for the Saffman-Taylor problem with surface tension. Phys Rev Lett, 1990, 65: 2986-2988
CrossRef Google scholar
[10]
Kawamoto S.An exact transformation from the Harry Dym equation to the modified KdV equation. J Phys Soc Jpn, 1985, 54: 2055-2056
CrossRef Google scholar
[11]
Kruskal M D.Nonlinear wave equations. In: Moser J, ed. Dynamical Systems, Theory and Applications. Lecture Note in Physics, Vol 38. New York: Springer-Verlag, 1975, 310-354
CrossRef Google scholar
[12]
Ohta Y, Maruno K, Feng B-F. An integrable semi-discretization of the Camassa-Holm equation and its determinant solution. J Phys A: Math Theor, 2008, 41: 355205
CrossRef Google scholar
[13]
Rogers C, Wong P. On reciprocal Bäcklund transformations of inverse scattering schemes. Physica Scripta, 1984, 30: 10-14
CrossRef Google scholar
[14]
Wadati M, Konno K, IchikawaY H. New integrable nonlinear evolution equations. J Phys Soc Jpn, 1979, 47: 1698-1700
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(115 KB)

Accesses

Citations

Detail

Sections
Recommended

/