S. V. Kovalevskaya system, its generalization and discretization

Matteo Petrera , Yuri B. Suris

Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1047 -1065.

PDF (149KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1047 -1065. DOI: 10.1007/s11464-013-0305-y
Research Article
RESEARCH ARTICLE

S. V. Kovalevskaya system, its generalization and discretization

Author information +
History +
PDF (149KB)

Abstract

We consider an integrable three-dimensional system of ordinary differential equations introduced by S. V. Kovalevskaya in a letter to G. Mittag-Leffler. We prove its isomorphism with the three-dimensional Euler top, and propose two integrable discretizations for it. Then we present an integrable generalization of the Kovalevskaya system, and study the problem of integrable discretization for this generalized system.

Keywords

Birational map / integrable map / algebraically integrable system

Cite this article

Download citation ▾
Matteo Petrera, Yuri B. Suris. S. V. Kovalevskaya system, its generalization and discretization. Front. Math. China, 2013, 8(5): 1047-1065 DOI:10.1007/s11464-013-0305-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Borisov A V, Mamaev I S. Poisson Structures and Lie-algebras in Hamiltonian Mechanics, 1999, Izhevsk: Izd UdSU

[2]

Fairlie D B. An elegant integrable system. Phys Lett A, 1987, 119(9): 438-440

[3]

Hirota R, Kimura K. Discretization of the Euler top. J Phys Soc Japan, 2000, 69: 627-630

[4]

Hone A N W, Petrera M. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. J Geom Mech, 2009, 1(1): 55-85

[5]

Correspondence of S V Kovalevskaya and G Mittag-Leffler. Nauka, 1984

[6]

Petrera M, Pfadler A, Suris Yu B. On integrability of Hirota-Kimura type discretizations. Experimental study of the discrete Clebsch system. Exp Math, 2009, 18(2): 223-247

[7]

Petrera M, Pfadler A, Suris Yu B. On integrability of Hirota-Kimura type discretizations. Regul Chaotic Dyn, 2011, 16(3–4): 245-289

[8]

Petrera M, Suris Yu B. On the Hamiltonian structure of Hirota-Kimura discretization of the Euler top. Math Nachr, 2011, 283(11): 1654-1663

[9]

Petrera M, Suris Yu B. Spherical geometry and integrable systems (in preparation)

[10]

Reyman A G, Semenov-Tian-Shansky M A. Group theoretical methods in the theory of finite-dimensional integrable systems. Dynamical Systems VII, 1994, Berlin: Springer

[11]

Suris Yu B. The Problem of Integrable Discretization: Hamiltonian Approach, 2003, Basel: Birkhäuser

AI Summary AI Mindmap
PDF (149KB)

809

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/