S. V. Kovalevskaya system, its generalization and discretization

Matteo PETRERA, Yuri B. SURIS

PDF(149 KB)
PDF(149 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1047-1065. DOI: 10.1007/s11464-013-0305-y
RESEARCH ARTICLE
RESEARCH ARTICLE

S. V. Kovalevskaya system, its generalization and discretization

Author information +
History +

Abstract

We consider an integrable three-dimensional system of ordinary differential equations introduced by S. V. Kovalevskaya in a letter to G. Mittag-Leffler. We prove its isomorphism with the three-dimensional Euler top, and propose two integrable discretizations for it. Then we present an integrable generalization of the Kovalevskaya system, and study the problem of integrable discretization for this generalized system.

Keywords

Birational map / integrable map / algebraically integrable system

Cite this article

Download citation ▾
Matteo PETRERA, Yuri B. SURIS. S. V. Kovalevskaya system, its generalization and discretization. Front Math Chin, 2013, 8(5): 1047‒1065 https://doi.org/10.1007/s11464-013-0305-y

References

[1]
Borisov A V, Mamaev I S. Poisson Structures and Lie-algebras in Hamiltonian Mechanics. Izhevsk: Izd UdSU, 1999 (in Russian)
[2]
Fairlie D B. An elegant integrable system. Phys Lett A, 1987, 119(9): 438440
CrossRef Google scholar
[3]
Hirota R, Kimura K. Discretization of the Euler top. J Phys Soc Japan, 2000, 69:627-630
CrossRef Google scholar
[4]
Hone A N W, Petrera M. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. J Geom Mech, 2009, 1(1): 55-85
CrossRef Google scholar
[5]
Correspondence of S V Kovalevskaya and G Mittag-Leffler. Nauka, 1984
[6]
Petrera M, Pfadler A, Suris Yu B. On integrability of Hirota-Kimura type discretizations. Experimental study of the discrete Clebsch system. Exp Math, 2009, 18(2): 223-247
CrossRef Google scholar
[7]
Petrera M, Pfadler A, Suris Yu B. On integrability of Hirota-Kimura type discretizations. Regul Chaotic Dyn, 2011, 16(3-4): 245-289
CrossRef Google scholar
[8]
Petrera M, Suris Yu B. On the Hamiltonian structure of Hirota-Kimura discretization of the Euler top. Math Nachr, 2011, 283(11): 1654-1663
CrossRef Google scholar
[9]
Petrera M, Suris Yu B. Spherical geometry and integrable systems (in preparation)
[10]
Reyman A G, Semenov-Tian-Shansky M A. Group theoretical methods in the theory of finite-dimensional integrable systems. In: Dynamical Systems VII. Berlin: Springer, 1994
[11]
Suris Yu B. The Problem of Integrable Discretization: Hamiltonian Approach. Progress in Mathematics, Vol 219. Basel: Birkhäuser, 2003
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(149 KB)

Accesses

Citations

Detail

Sections
Recommended

/