![](/develop/static/imgs/pdf.png)
Certain classes of
Qingzhai FAN, Xiaochun FANG
Certain classes of
We show that the following classes of C*-algebras in the classes Ω are inherited by simple unital C*-algebras in the classes TAΩ: (1) simple unital purely infinite C∗-algebras, (2) unital isometrically rich C*-algebras, (3) unital Riesz interpolation C*-algebras.
C*-algebras / isometrically rich C*-algebras / Riesz interpolation C*-algebras
[1] |
Brown L G, Pedersen G K. Non-stable K-theory and extremally rich C*-algebras. arXiv preprint math, OA/0708.3078
|
[2] |
Brown L G, Pedersen G K. Ideal structure and C*-algebras of low rank. Math Scand, 2007, 100: 5-33
|
[3] |
Elliott G A. On the classification of the inductive limits of sequences of semisimple finite dimensional algebras. J Algebra, 1976, 38: 29-44
CrossRef
Google scholar
|
[4] |
Elliott G A, Niu Z. On tracial approximation. J Funct Anal, 2008, 254: 396-440
CrossRef
Google scholar
|
[5] |
Fan Qingzhai. Classification of certain simple C∗-algebras. J Ramanujan Math Soc, 2011, 26: 1-7
|
[6] |
Fan Qingzhai. Some C*-algebras properties preserved by tracial approximation. Israel J Math (to appear)
|
[7] |
Fan Qingzhai, Fang Xiaochun. Non-simple tracial approximation. Houston J Math, 2011, 37: 1249-1263
|
[8] |
Fang Xiaochun. The classification of certain non-simple C*-algebras of tracial rank zero. J Funct Anal, 2009, 256: 3861-3891
CrossRef
Google scholar
|
[9] |
Lin H. The tracial topological rank of C*-algebras. Proc London Math Soc, 2001, 83: 199-234
CrossRef
Google scholar
|
[10] |
Lin H. An Introduction to The Classification of Amenable C*-algebras. London, Singapore: World Scientific Publisher, 2001
CrossRef
Google scholar
|
[11] |
Niu Z. A classification of certain tracially approximately subhomogeneous C*-algebras. <DissertationTip/>, University of Toronto, 2005
|
[12] |
Zhang S. A property of purely infinite simple C*-algebras. Proc Amer Math Soc, 1990, 109: 717-720
|
/
〈 |
|
〉 |