Joint probability generating function for degrees of active/passive random intersection graphs

Yilun Shang

Front. Math. China ›› 2011, Vol. 7 ›› Issue (1) : 117 -124.

PDF (128KB)
Front. Math. China ›› 2011, Vol. 7 ›› Issue (1) : 117 -124. DOI: 10.1007/s11464-011-0165-2
Research Article
RESEARCH ARTICLE

Joint probability generating function for degrees of active/passive random intersection graphs

Author information +
History +
PDF (128KB)

Abstract

Correlations of active and passive random intersection graphs are studied in this paper. We present the joint probability generating function for degrees of Gactive(n, m, p) and Gpassive(n, m, p), which are generated by a random bipartite graph G*(n, m, p) on n + m vertices.

Keywords

Random graph / intersection graph / degree / generating function

Cite this article

Download citation ▾
Yilun Shang. Joint probability generating function for degrees of active/passive random intersection graphs. Front. Math. China, 2011, 7(1): 117-124 DOI:10.1007/s11464-011-0165-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Eschenauer L, Gilgor V D. A key-management scheme for distributed sensor networks. In: Proc 9th ACM Conference of Computer and Communications Security. 2002, 41–47

[2]

Feller W. An Introduction to Probability Theory and Its Applications, Vol 1, 1968, New York: Wiley

[3]

Godehardt E., Jaworski J. Schwaiger M., Opitz O. Two models of random intersection graphs for classification. Exploratory Data Analysis in Empirical Research, 2003, Berlin: Springer-Verlag, 67-81

[4]

Jaworski J., Karoński M., Stark D. The degree of a typical vertex in generalized random intersection graph models. Discrete Math, 2006, 306: 2152-2165

[5]

Jaworski J., Stark D. The vertex degree distribution of passive random intersection graph models. Combin Probab Comput, 2008, 17: 549-558

[6]

Karoński M., Scheinerman E. R., Singer-Cohen K. B. On random intersection graphs: the subgraph problem. Combin Probab Comput, 1999, 8: 131-159

[7]

Newman M. E. J. The structure of scientific collaboration networks. Proc Natl Acad Sci USA, 2001, 98: 404-409

[8]

Newman M. E. J. Properties of highly clustered networks. Phys Rev E, 2003, 68: 026121

[9]

Shang Y. Degree distributions in general random intersection graphs. Electron J Combin, 2010, 17: R23

[10]

Shang Y. Typical vertex degrees in dense generalized random intersection graphs. Math Appl, 2010, 23: 767-773

[11]

Shang Y. Groupies in random bipartite graphs. Appl Anal Discrete Math, 2010, 4: 278-283

[12]

Shang Y. On the isolated vertices and connectivity in random intersection graphs. Int J Comb, 2011, 2011: 872703

[13]

Singer-Cohen K. B. Random Intersection Graphs. Dissertation, 1995, Baltimore: Johns Hopkins University

[14]

Stark D. The vertex degree distribution of random intersection graphs. Random Structures Algorithms, 2004, 24: 249-258

AI Summary AI Mindmap
PDF (128KB)

912

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/