Twisted fermionic and bosonic representations for a class of BC-graded Lie algebras

Fulin CHEN, Shaobin TAN

PDF(253 KB)
PDF(253 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 607-628. DOI: 10.1007/s11464-011-0147-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Twisted fermionic and bosonic representations for a class of BC-graded Lie algebras

Author information +
History +

Abstract

In this paper, we study the fermionic and bosonic representations for a class of BC-graded Lie algebras coordinatized by skew Laurent polynomial rings. This generalizes the fermionic and bosonic constructions for the affine Kac-Moody algebras of type AN(2).

Keywords

Fermionic and bosonic representation / graded Lie algebra / unitary representation

Cite this article

Download citation ▾
Fulin CHEN, Shaobin TAN. Twisted fermionic and bosonic representations for a class of BC-graded Lie algebras. Front Math Chin, 2011, 6(4): 607‒628 https://doi.org/10.1007/s11464-011-0147-4

References

[1]
Allison B N, Azam S, Berman S, Gao Y, Pianzola A. Extended Affine Lie Algebras and Their Root Systems. Mem Amer Math Soc, Vol 126, No 603. Providence: Am Math Soc, 1997
[2]
Allison B N, Benkart G, Gao Y. Central extensions of Lie algebras graded by finite root systems. Math Ann, 2000, 316: 499-527
CrossRef Google scholar
[3]
Allison B N, Benkart G, Gao Y. Lie Algebras Graded by the Root Systems BCr, r≥2. Mem Am Math Soc, Vol 158, No 751. Providence: Am Math Soc, 2002
[4]
Benkart G, Zelmanov E. Lie algebras graded by finite root systems and intersection matrix algebras. Invent Math, 1996, 126: 1-45
CrossRef Google scholar
[5]
Berman S, Moody R V. Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy. Invent Math, 1992, 108: 323-347
CrossRef Google scholar
[6]
Chen H, Gao Y. BCN-graded Lie algebras arising from fermionic representations. J Alg, 2007, 308: 545-566
CrossRef Google scholar
[7]
Feingold A J, Frenkel I B. Classical affine Lie algebras. Adv Math, 1985, 56: 117-172
CrossRef Google scholar
[8]
Frenkel I B. Spinor representation of affine Lie algebras. Proc Natl Acad Sci USA, 1980, 77: 6303-6306
CrossRef Google scholar
[9]
Frenkel I B. Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory. J Funct Anal, 1981, 44: 259-327
CrossRef Google scholar
[10]
Gao Y. Vertex operators arising from the homogeneous realization for g^lN. Comm Math Phys, 2000, 211: 23-66
CrossRef Google scholar
[11]
Gao Y. Fermionic and bosonic representations of the extended affine Lie algebra glN(ℂq) ˜. Canada Math Bull, 2002, 45: 623-633
CrossRef Google scholar
[12]
Jing N, Misra K C. Fermionic realization of toroidal Lie algebras of classical types. J Alg, 2010, 324: 183-194
CrossRef Google scholar
[13]
Jing N, Misra K C, Xu C. Bosonic realization of toroidal Lie algebras of classical types. Proc Am Math Soc, 2009, 137: 3609-3618
CrossRef Google scholar
[14]
Kac V G, Peterson D H. Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc Natl Acad Sci USA, 1981, 78: 3308-3312
CrossRef Google scholar
[15]
Lau M. Bosonic and fermionic representations of Lie algebra central extensions. Adv Math, 2005, 194: 225-245
CrossRef Google scholar
[16]
Neher E. Lie algebras graded by 3-graded root systems. Am J Math, 1996, 118: 439-491
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(253 KB)

Accesses

Citations

Detail

Sections
Recommended

/