Twisted fermionic and bosonic representations for a class of BC-graded Lie algebras

Fulin Chen, Shaobin Tan

Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 607-628.

PDF(253 KB)
Front. Math. China All Journals
PDF(253 KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (4) : 607-628. DOI: 10.1007/s11464-011-0147-4
Research Article
RESEARCH ARTICLE

Twisted fermionic and bosonic representations for a class of BC-graded Lie algebras

Author information +
History +

Abstract

In this paper, we study the fermionic and bosonic representations for a class of BC-graded Lie algebras coordinatized by skew Laurent polynomial rings. This generalizes the fermionic and bosonic constructions for the affine Kac-Moody algebras of type A N (2).

Keywords

Fermionic and bosonic representation / graded Lie algebra / unitary representation

Cite this article

Download citation ▾
Fulin Chen, Shaobin Tan. Twisted fermionic and bosonic representations for a class of BC-graded Lie algebras. Front. Math. China, 2011, 6(4): 607‒628 https://doi.org/10.1007/s11464-011-0147-4
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Allison B. N., Azam S., Berman S., Gao Y., Pianzola A. Extended Affine Lie Algebras and Their Root Systems, 1997, Providence: Am Math Soc.
[2.]
Allison B. N., Benkart G., Gao Y. Central extensions of Lie algebras graded by finite root systems. Math Ann, 2000, 316, 499-527
CrossRef Google scholar
[3.]
Allison B. N., Benkart G., Gao Y. Lie Algebras Graded by the Root Systems BC r, r ⩾ 2, 2002, Providence: Am Math Soc.
[4.]
Benkart G., Zelmanov E. Lie algebras graded by finite root systems and intersection matrix algebras. Invent Math, 1996, 126, 1-45
CrossRef Google scholar
[5.]
Berman S., Moody R. V. Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy. Invent Math, 1992, 108, 323-347
CrossRef Google scholar
[6.]
Chen H., Gao Y. BCN-graded Lie algebras arising from fermionic representations. J Alg, 2007, 308, 545-566
CrossRef Google scholar
[7.]
Feingold A. J., Frenkel I. B. Classical affine Lie algebras. Adv Math, 1985, 56, 117-172
CrossRef Google scholar
[8.]
Frenkel I. B. Spinor representation of affine Lie algebras. Proc Natl Acad Sci USA, 1980, 77, 6303-6306
CrossRef Google scholar
[9.]
Frenkel I. B. Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory. J Funct Anal, 1981, 44, 259-327
CrossRef Google scholar
[10.]
Gao Y. Vertex operators arising from the homogeneous realization for gl^N. Comm Math Phys, 2000, 211, 23-66
CrossRef Google scholar
[11.]
Gao Y. Fermionic and bosonic representations of the extended affine Lie algebra glN(Cq)~. Canada Math Bull, 2002, 45, 623-633
CrossRef Google scholar
[12.]
Jing N., Misra K. C. Fermionic realization of toroidal Lie algebras of classical types. J Alg, 2010, 324, 183-194
CrossRef Google scholar
[13.]
Jing N., Misra K. C., Xu C. Bosonic realization of toroidal Lie algebras of classical types. Proc Am Math Soc, 2009, 137, 3609-3618
CrossRef Google scholar
[14.]
Kac V. G., Peterson D. H. Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc Natl Acad Sci USA, 1981, 78, 3308-3312
CrossRef Google scholar
[15.]
Lau M. Bosonic and fermionic representations of Lie algebra central extensions. Adv Math, 2005, 194, 225-245
CrossRef Google scholar
[16.]
Neher E. Lie algebras graded by 3-graded root systems. Am J Math, 1996, 118, 439-491
CrossRef Google scholar
AI Summary AI Mindmap
PDF(253 KB)

664

Accesses

0

Citations

Detail

Sections
Recommended

/