Dimension-Free Harnack Inequality and its Applications

Feng-Yu Wang

Front. Math. China ›› 2006, Vol. 1 ›› Issue (1) : 53 -72.

PDF (326KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (1) : 53 -72. DOI: 10.1007/s11464-005-0021-3
Survey Article

Dimension-Free Harnack Inequality and its Applications

Author information +
History +
PDF (326KB)

Abstract

This paper presents a self-contained account concerning a dimension-free Harnack inequality and its applications. This new type of inequality not only implies heat kernel bounds as the classical Li-Yau’s Harnack inequality did, but also provides a direct way to describe various dimension-free properties of finite and infinite-dimensional diffusion semigroups. The author starts with a standard weighted Laplace operator on a Riemannian manifold with curvature bounded from below, and then move further to the unbounded below curvature case and its infinite-dimensional settings.

Keywords

Harnack inequality / diffusion semigroup / Riemannian manifold / heat kernel / hypercontractivity / supercontractivity / ultracontractivity / 58J65 / 60H30

Cite this article

Download citation ▾
Feng-Yu Wang. Dimension-Free Harnack Inequality and its Applications. Front. Math. China, 2006, 1(1): 53-72 DOI:10.1007/s11464-005-0021-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aida S. Uniformly positivity improving property, Sobolev inequalities and spectral gaps. J. Funct. Anal., 1998, 158: 152-185.

[2]

Aida S. and Kawabi H., Short time asymptotics of certain infinite dimensional diffusion process, Stochastic Analysis and Related Topics, VII, Kusadasi, Japan, 1998, 77–124

[3]

Aida S., Zhang T. On the small time asymptotics of diffusion processes on path groups. Potential Anal., 2002, 16: 67-78.

[4]

Arnaudon M., Thalmaier A. and Wang F.-Y., Harnack inequality and heat kernel estimate on manifolds with curvature unbounded below, Bull. Sci. Math., in press.

[5]

Aronson D. G. The porous medium equation. Lecture Notes Math., 1986, 1224: 1-46.

[6]

Bakry D., On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, in: Elworthy K. D., Kusuoka S. and Shigekawa I., eds., New Trends in Stochastic Analysis, Singapore: World Scientific, 1997

[7]

Bakry D., Qian Z.-M. Harnack inequalities on a manifold with positive or negative Ricci curvature. Rev. Mat. Iberoam., 1999, 15: 143-179.

[8]

Bendikov A. and Maheux P., Nash type inequalities for fractional powers of nonnegative self-adjoint operators, preprint, http://hal.ccsd.cnrs.fr/ccsd-00001228

[9]

Bobkov S. G., Gentil I., Ledoux M. Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pures Appl., 2001, 80(7): 669-696.

[10]

Bobkov S. G., Götze F. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal., 1999, 163: 1-28.

[11]

Chen M.-F. Variational formulas of Poincaré-type inequalities in Banach spaces of functions on the line. Acta Math. Sin. (N.S.), 2002, 18: 417-436.

[12]

Chen M.-F. Eigenvalues, Inequalities, and Ergodic Theory, 2004, London: Springer-Verlag.

[13]

Chen M.-F. Capacitary criteria for Poincaré-type inequalities. Potential Anal., 2005, 23: 303-322.

[14]

Chen M.-F., Wang F.-Y. Application of coupling method to the first eigenvalue on manifold. Sci. Sin. A, 1994, 37(1): 1-14.

[15]

Coulhon T., Duong X. T. Riesz transforms for 1≤p≤2. Trans. Am. Math. Soc., 1999, 351(3): 1151-1169.

[16]

Cranston M. Gradient estimates on manifolds using coupling. J. Funct. Anal., 1991, 99: 110-124.

[17]

Davies E. B. Heat Kernels and Spectral Theory, 1989, Cambridge: Cambridge University Press.

[18]

Davies E. B., Simon B. Ultracontractivity and heat kernel for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal., 1984, 59: 335-395.

[19]

Gong F.-Z., Wang F.-Y. Heat kernel estimates with application to compactness of manifolds. Q. J. Math., 2001, 52: 171-180.

[20]

Gong F.-Z., Wang F.-Y. On Gromov’s theorem and L2-Hodge decomposition. Int. Math. Math. Sci., 2004, 2004(1): 25-44.

[21]

Gross L. Logarithmic Sobolev inequalities. Am. J. Math., 1976, 97: 1061-1083.

[22]

Grigor’yan A. Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differ. Geom., 1997, 45: 33-52.

[23]

Kawabi H. The parabolic Harnack inequality for the time dependent Ginzburg-Landau type SPDE and its application. Potential Anal., 2005, 22: 61-84.

[24]

Kendall W. S. Nonnegative Ricci curvature and the Brownian coupling property. Stochastics, 1986, 19: 111-129.

[25]

Krylov N. V., Rozovskii B. L. Stochastic evolution equations, Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki. Plenum, 1979, 14: 71-146.

[26]

Li P., Yau S.-T. On the parabolic kernel of the Schrödinger operator. Acta Math., 1986, 156: 153-201.

[27]

Li X.-M., Wang F.-Y. On compactness of Riemannian manifolds. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2003, 1(6): 29-38.

[28]

Röckner M., Wang F.-Y. Supercontractivity and ultracontractivity for (non-symmetric) diffusion semigroups on manifolds. Forum Math., 2003, 15: 893-921.

[29]

Röckner M., Wang F.-Y. Harnack and functional inequalities for generalized Mehler semigroups. J. Funct. Anal., 2003, 203: 237-261.

[30]

Villani C. Topics in Mass Transportation, 2003, Providence, RI: Am. Math. Soc.

[31]

Wang F.-Y. Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Relat. Fields, 1997, 109: 417-424.

[32]

Wang F.-Y. Harnack inequalities for log-Sobolev functions and estimates of log-Sobolev constants. Ann. Probab., 1999, 27: 653-663.

[33]

Wang F.-Y. Functional inequalities for empty essential spectrum. J. Funct. Anal., 2000, 170: 219-245.

[34]

Wang F.-Y. Functional inequalities, semigroup properties and spectrum estimates. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2000, 3: 263-295.

[35]

Wang F.-Y. Logarithmic Sobolev inequalities: conditions and counterexamples. J. Operator Theory, 2001, 46: 183-197.

[36]

Wang F-Y Functional inequalities and spectrum estimates: the infinite measure case. J. Funct. Anal., 2002, 194: 288-310.

[37]

Wang F.-Y. Equivalence of dimension-free Harnack inequality and curvature condition. Integr. Equ. Oper. Theory, 2004, 48: 547-552.

[38]

Wang F.-Y. Functional Inequalities, Markov Properties, and Spectral Theory, 2005, Beijing: Science Press.

[39]

Wang F.-Y., Harnack Inequality and Applications for Stochastic Generalized Porous Media and Fast Diffusion Equations, preprint.

[40]

Wu L. Uniformly integrable operators and large deviations for Markov processes. J. Funct. Anal., 2000, 172: 301-376.

AI Summary AI Mindmap
PDF (326KB)

779

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/