Cogeneration units, which produce both heat and electric power, are found in many process industries. These industries also consume heat directly in addition to electricity. The cogeneration units operate only within a feasible zone. Each point within the feasible zone consists of a specific value of heat and electric power. These units are used along with other units, which produce either heat or power exclusively. Hence, the economic dispatch problem for these plants to optimize the fuel cost is quite complex and several classical and meta-heuristic algorithms have been proposed earlier. This paper applies the firefly algorithm, which is inspired by the behavior of fireflies which attract each other based on their luminosity. The results obtained have been compared with those obtained by other methods earlier and showed a marked improvement over the earlier methods.
In this paper, a nonlinear control strategy applied to an AC-DC-pulse width modulation (PWM) converter is developed and simulated. First a nonlinear system modeling is derived with state variables of the input current and the output voltage by using power balance of the input and output. The system is linearized and decoupled, and then a state feedback law is obtained. For robust control of parameter perturbation, integrators are added to the exact feedback control law. The simulation is provided to verify the validity of the control algorithm.
The experimental
The radiant cooling system generally operates with the dedicated outdoor air system (DOAS). Air supply modes and the corresponding setting parameters of the hybrid system may substantially influence the indoor thermal comfort. With target indexes of air diffusion performance index (ADPI) and predicted mean vote (PMV), the Taguchi method was used to choose the optimal air supply mode and to analyze the significance of different factors on the thermal comfort. The results are expected for conducting the future design and regulation of the hybrid system. Computation fluid dynamics (CFD) simulation as well as verified experiments was performed during the research. Based on the ADPI studies, it is found that the air supply mode of ceiling delivery with ceiling exhaust is an optimized option to apply in DOAS of the hybrid system. Variance analysis results show that influence fact of air supply temperature is the most dominant one to impact the indoor thermal comfort index of PMV.
Pulsating heat pipe (PHP), or oscillating heat pipe (OHP), a novel type of highly efficient heat transfer component, has been widely applied in many fields, such as in space-borne two-phase thermal control systems, in the cooling of electronic devices and in energy-saving technology, etc. In the present paper, the characteristics and working principles of the PHPs are introduced and the current researches in the field are described from the viewpoint of experimental tests, theoretical analyses as well as practical applications. Besides, it is found that the state-of-the-art experimental investigations on the PHPs are mainly focused on the flow visualization and the applications of nanofluids and other functional fluids, aiming at enhancing the heat transfer performance of the PHPs. In addition, it is also pointed out that the present theoretical analyses of the PHP are restricted by further development of two-phase flow theories, and are concentrated in the non-linear analyses. Numerical simulations are expected to be another research focus, in particular of the combination of the nanofluids and functional fluids.
This paper discusses the robust control of a grid-connected doubly-fed induction generator (DFIG) controlled by vector control using a nonlinear feedback linearization strategy in order to ameliorate the performances of the control and to govern the developed stator active and reactive power in a linear and decoupled manner, in which an optimal operation of the DFIG in sub-synchronous operation is given, as well as the control stator power flow with the possibility of keeping stator power factor at a unity. The use of the state-all-flux induction machine model gives place to a simpler control model. So, to achieve this objective, the Lyapunov approach is used associated with a sliding mode control to guarantee the global asymptotical stability and the robustness of the parametric variations.
In this study, the global solar radiation on horizontal surface in Osogbo, Osun state, Nigeria was analyzed using 11-year data (1997–2007). Correlations using linear and quadratic expressions were developed to relate the global solar radiation on horizontal surface based on relative sunshine hours and temperature measurements for evaluating the monthly average daily global solar radiation. The calculated monthly clearness index values indicate that the prevailing weather condition in Osogbo is heavily overcast. All the developed quadratic correlations gave better correlation coefficients (0.834, 0.872 and 0.823 respectively) than the linear models. However, the Hargreaves and Samani related based quadratic model gave the best among the three developed quadratic expressions and is therefore suggested for estimating the monthly global radiation in this site and its surroundings.
In order to alleviate the pressure of experimental research of turbocharged diesel engine under transient operations, a whole process simulation platform for turbocharged diesel engine under transient operations was established based on the multi-software coupling technologies of Matlab/Simulink, GT-Power, STAR-CD and artificial neural network. Aimed at the contradiction of NO
This paper presents the analysis of load frequency control (LFC) of a deregulated two-area hydro-thermal power system using fuzzy logic controller, with doubly fed induction generators (DFIGs) integrated into both the control areas. The deregulation of power sector has led to the formation of new companies for generation, transmission and distribution of power. The conventional two-area power system is modified to study the effects of the bilateral contracts of companies on the system dynamics. Deregulation creates highly competitive and distributed control environment, and the LFC becomes even more challenging when wind generators are also integrated into the system. The overall inertia of the system reduces, as the wind unit does not provide inertia and isolates from the grid during disturbances. The DFIGs integrated provide inertial support to the system through modified inertial control scheme, and arrests the initial fall in frequency after disturbance. The inertial control responds to frequency deviations, which takes out the kinetic energy of the wind turbine for improving the frequency response of the system. To enhance the participation of the doubly fed induction generator (DFIG) in the frequency control, optimal values of the speed control parameters of the DFIG-based wind turbine have been obtained using integral square error (ISE) technique. The dynamics of the system have been obtained for a small load perturbation, and for contract violation using fuzzy controller.
With the objective of producing a full-scale tiny-oil ignition burner, identical to the burner used in an 800 MWe utility boiler, numerical simulations were performed using Fluent 6.3.26 to study the progress of ignition for four coal concentration settings covering sub-operation conditions prevailing during the experiments performed with the burner. The numerical simulations conformed to the experimental results, demonstrating the suitability of the model used in the calculations. Simulations for a coal concentration of 0.40 kg/kg corresponding to a single burner operating at its rated output were also conducted, which indicated that gas temperatures along the burner centerline were high. As gas flowed to the burner nozzle, the high-temperature region expanded, ensuring a successful pulverized-coal ignition. With increasing coal concentration (0.08–0.40 kg/kg), the gas temperature along the burner centerline and at the first and second combustion chamber exits decreased at the equivalent radial points. At the center of the second combustion chamber exit, the O2 concentrations were almost depleted for the five coal concentrations, while the CO concentrations peaked.