Engineered supramolecular crystals for high-capacity hydrogen storage
Jiayi Zuo , Hao Wang , Hongyi Gao
Front. Energy ›› 2025, Vol. 19 ›› Issue (5) : 556 -562.
Engineered supramolecular crystals for high-capacity hydrogen storage
Hydrogen storage is a critical component in transition to clean energy systems and the promotion of sustainable practices across various industries. The primary technical challenge lies in designing adsorbent materials that effectively balance both volumetric and gravimetric storage capabilities while ensuring operational reliability. Achieving this balance is essential for the efficient and practical application of hydrogen in fuel-based systems. Recently, in Nature Chemistry, Stoddart et al. introduced a straightforward and precise method: multivalent hydrogen bonding facilitates molecular linkage at defined nodal points in hydrogen-bonded organic frameworks (HOFs). This methodology demonstrates simultaneous optimization of hydrogen storage performance, achieving notable volumetric (53.7 g/L) and gravimetric (9.3 wt%) capacities under dynamic thermo-pressure cycling conditions.
volumetric capacity / gravimetric capacity / point-contact manner / hydrogen-bonded organic frameworks (HOFs) / hydrogen storage
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
Higher Education Press 2025
/
| 〈 |
|
〉 |