Engineered supramolecular crystals for high-capacity hydrogen storage

Jiayi Zuo , Hao Wang , Hongyi Gao

Front. Energy ›› 2025, Vol. 19 ›› Issue (5) : 556 -562.

PDF (2424KB)
Front. Energy ›› 2025, Vol. 19 ›› Issue (5) : 556 -562. DOI: 10.1007/s11708-025-1026-0
PERSPECTIVES

Engineered supramolecular crystals for high-capacity hydrogen storage

Author information +
History +
PDF (2424KB)

Abstract

Hydrogen storage is a critical component in transition to clean energy systems and the promotion of sustainable practices across various industries. The primary technical challenge lies in designing adsorbent materials that effectively balance both volumetric and gravimetric storage capabilities while ensuring operational reliability. Achieving this balance is essential for the efficient and practical application of hydrogen in fuel-based systems. Recently, in Nature Chemistry, Stoddart et al. introduced a straightforward and precise method: multivalent hydrogen bonding facilitates molecular linkage at defined nodal points in hydrogen-bonded organic frameworks (HOFs). This methodology demonstrates simultaneous optimization of hydrogen storage performance, achieving notable volumetric (53.7 g/L) and gravimetric (9.3 wt%) capacities under dynamic thermo-pressure cycling conditions.

Graphical abstract

Keywords

volumetric capacity / gravimetric capacity / point-contact manner / hydrogen-bonded organic frameworks (HOFs) / hydrogen storage

Cite this article

Download citation ▾
Jiayi Zuo, Hao Wang, Hongyi Gao. Engineered supramolecular crystals for high-capacity hydrogen storage. Front. Energy, 2025, 19(5): 556-562 DOI:10.1007/s11708-025-1026-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yuvaraj A R , Jayarama A , Sharma D . . Role of metal-organic framework in hydrogen gas storage: A critical review. International Journal of Hydrogen Energy, 2024, 59: 1434–1458

[2]

Sengupta D , Melix P , Bose S . . Air-stable Cu(I) metal-organic framework for hydrogen storage. Journal of the American Chemical Society, 2023, 145(37): 20492–20502

[3]

Shangguan W , Zhao H , Dai J Q . . First-principles study of hydrogen storage of Sc-modified semiconductor covalent organic framework-1. ACS Omega, 2021, 6(34): 21985–21993

[4]

Meng Z S , Ma H Y , Wang Q . . Boosting hydrogen storage performance in COF-108 by single-walled carbon nanotube insertion, boron substitution, and lithium doping at room temperature. Science China. Technological Sciences, 2024, 67(12): 3791–3800

[5]

Yabuuchi Y , Furukawa H , Carsch K M . . Geometric tuning of coordinatively unsaturated copper(I) sites in metal-organic frameworks for ambient-temperature hydrogen storage. Journal of the American Chemical Society, 2024, 146(32): 22759–22776

[6]

Kim D W , Jung M , Shin D Y . . Fine-tuned MOF-74 type variants with open metal sites for high volumetric hydrogen storage at near-ambient temperature. Chemical Engineering Journal, 2024, 489: 151500

[7]

Chen Z J , Kirlikovali K O , Idrees K B . . Porous materials for hydrogen storage. Chem, 2022, 8(3): 693–716

[8]

Sutton A L , Mardel J I , Hill M R . Metal-organic frameworks (MOFs) as hydrogen storage materials at near-ambient temperature. Chemistry, 2024, 30(44): e202400717

[9]

Ma T Q , Kapustin E A , Yin S X . . Single-crystal X-ray diffraction structures of covalent organic frameworks. Science, 2018, 361(6397): 48–52

[10]

Liu Y Z , Ma Y H , Zhao Y B . . Weaving of organic threads into a crystalline covalent organic framework. Science, 2016, 351(6271): 365–369

[11]

Peng L , Guo Q , Song C . . Ultra-fast single-crystal polymerization of large-sized covalent organic frameworks. Nature Communications, 2021, 12(1): 5077

[12]

Liu W , Tupe J A , Aguey-Zinsou K F . Metal hydride storage systems: Approaches to improve their performances. Particle & Particle Systems Characterization, 2025, 42(3): 2400163

[13]

Drawer C , Lange J , Kaltschmitt M . Metal hydrides for hydrogen storage—Identification and evaluation of stationary and transportation applications. Journal of Energy Storage, 2024, 77: 109988

[14]

Zhang Y H , Wu S F , Wang L W . . Chemisorption solid materials for hydrogen storage near ambient temperature: a review. Frontiers in Energy, 2023, 17(1): 72–101

[15]

Khaleque A , Alam M M , Hoque M . . Zeolite synthesis from low-cost materials and environmental applications: A review. Environmental Advances, 2020, 2: 100019

[16]

Kim D W , Chen Y , Kim H . . High hydrogen storage in trigonal prismatic monomer-based highly porous aromatic frameworks. Advanced Materials, 2024, 36(26): 2401739

[17]

Vantomme G , Meijer E W . The construction of supramolecular systems. Science, 2019, 363(6434): 1396–1397

[18]

Lin R B , Chen B L . Hydrogen-bonded organic frameworks: Chemistry and functions. Chem, 2022, 8(8): 2114–2135

[19]

Li H B , Chen C , Li Q . . An ultra-stable supramolecular framework based on consecutive side-by-side hydrogen bonds for one-step C2H4/C2H6 separation. Angewandte Chemie International Edition, 2024, 63(18): e202401754

[20]

Li J H , Liu P X , Chen Y . . A customized hydrophobic porous shell for MOF-5. Journal of the American Chemical Society, 2023, 145(36): 19707–19714

[21]

Ahmed A , Liu Y , Purewal J . . Balancing gravimetric and volumetric hydrogen density in MOFs. Energy & Environmental Science, 2017, 10(11): 2459–2471

[22]

Carrera M , Such-Basáñez I , Marco-Lozar J P . . Rational design of 7-azaindole-based robust microporous hydrogen-bonded organic framework for gas sorption. Angewandte Chemie International Edition, 2025, 64(1): e202412981

[23]

Mastalerz M , Oppel I M . Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. Angewandte Chemie International Edition, 2012, 51(21): 5252–5255

[24]

Zhou D D , Xu Y T , Lin R B . . High-symmetry hydrogen-bonded organic frameworks: air separation and crystal-to-crystal structural transformation. Chemical Communications, 2016, 52(28): 4991–4994

[25]

Takeda T , Ozawa M , Akutagawa T . Jumping crystal of a hydrogen-bonded organic framework induced by the collective molecular motion of a twisted π system. Angewandte Chemie International Edition, 2019, 58(30): 10345–10352

[26]

Hu F , Liu C , Wu M . . An ultrastable and easily regenerated hydrogen-bonded organic molecular framework with permanent porosity. Angewandte Chemie International Edition, 2017, 56(8): 2101–2104

[27]

Zentner C A , Lai H W H , Greenfield J T . . High surface area and Z′ in a thermally stable 8-fold polycatenated hydrogen-bonded framework. Chemical Communications, 2015, 51(58): 11642–11645

[28]

Liu X , Liu G , Fu T . . Structural design and energy and environmental applications of hydrogen-bonded organic frameworks: A systematic review. Advanced Science, 2024, 11(22): 2400101

[29]

Meng W J , Kondo S , Ito T . . An elastic metal-organic crystal with a densely catenated backbone. Nature, 2021, 598(7880): 298–303

[30]

Perl D , Lee S J , Ferguson A . . Hetero-interpenetrated metal-organic frameworks. Nature Chemistry, 2023, 15(10): 1358–1364

[31]

Wang B , Lin R B , Zhang Z J . . Hydrogen-bonded organic frameworks as a tunable platform for functional materials. Journal of the American Chemical Society, 2020, 142(34): 14399–14416

[32]

Wang J X , Zhang X , Jiang C H . . Construction of highly porous and robust hydrogen-bonded organic framework for high-capacity clean energy gas storage. Angewandte Chemie International Edition, 2024, 63(51): e202411753

[33]

Zhang R H , Daglar H , Tang C . . Balancing volumetric and gravimetric capacity for hydrogen in supramolecular crystals. Nature Chemistry, 2024, 16(12): 1982–1988

[34]

García-Holley P , Schweitzer B , Islamoglu T . . Benchmark study of hydrogen storage in metal-organic frameworks under temperature and pressure swing conditions. ACS Energy Letters, 2018, 3(3): 748–754

[35]

Lim W X , Thornton A W , Hill A J . . High performance hydrogen storage from Be-BTB metal-organic framework at room temperature. Langmuir, 2013, 29(27): 8524–8533

[36]

Hao H , Mu Z X , Liu Z W . . Abating transport GHG emissions by hydrogen fuel cell vehicles: Chances for the developing world. Frontiers in Energy, 2018, 12(3): 466–480

[37]

Chan C C , Han W , Tian H L . . Automotive revolution and carbon neutrality. Frontiers in Energy, 2023, 17(6): 693–703

[38]

Li F , Han G F , Noh H J . . Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nature Communications, 2019, 10(1): 4060

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (2424KB)

482

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/