Highlights of mainstream solar cell efficiencies in 2024

Wenzhong Shen , Yixin Zhao , Feng Liu

Front. Energy ›› 2025, Vol. 19 ›› Issue (1) : 8 -17.

PDF (484KB)
Front. Energy ›› 2025, Vol. 19 ›› Issue (1) : 8 -17. DOI: 10.1007/s11708-025-0985-5
HIGHLIGHTS

Highlights of mainstream solar cell efficiencies in 2024

Author information +
History +
PDF (484KB)

Cite this article

Download citation ▾
Wenzhong Shen, Yixin Zhao, Feng Liu. Highlights of mainstream solar cell efficiencies in 2024. Front. Energy, 2025, 19(1): 8-17 DOI:10.1007/s11708-025-0985-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aberle A G, Glunz S W, Stephens A W. . High efficiency silicon solar cell: Si/SiO2 interface parameters and their impact on device performance. Progress in Photovoltaics: Research and Applications, 1994, 2(4): 265–273

[2]

Green M A, Dunlop E D, Yoshita M. . Solar cell efficiency tables (Version 65). Progress in Photovoltaics: Research and Applications, 2025, 33(1): 3–15

[3]

Zheng P T, Yang J, Wang Z. . Detailed loss analysis of 24.8% large-area screen-printed n-type solar cell with polysilicon passivating contact. Cell Reports. Physical Science, 2021, 2(10): 100603

[4]

Ghosh D K, Bose S, Das G. . Fundamentals, present status and future perspective of TOPCon solar cells: A comprehensive review. Surfaces and Interfaces, 2022, 30: 101917

[5]

Huang Y Y, Jain A, Choi W J. . Modeling and understanding of rear junction double-side passivated contact solar cells with selective area TOPCon on front. In: IEEE 48th Photovoltaic Specialists Conference (PVSC), 2021,

[6]

Grübel B, Cimiotti G, Schmiga C. . Progress of plated metallization for industrial bifacial TOPCon silicon solar cells. Progress in Photovoltaics: Research and Applications, 2022, 30(6): 615–621

[7]

JASolar Technology Co.Ltd. JA Solar’s bycium + cell achieves record-breaking 748.6 mV open-circuit voltage certified by ISFH. 2024–12-16, available at website of PR Newswire

[8]

Trinasolar. Trinasolar unveils i-TOPCon ultra technology, with cell efficiency of 26.58%. 2024-11-28, available at website of Trinasolar

[9]

Wang Q Q, Guo K Y, Gu S W. . Electrical performance, loss analysis, and efficiency potential of industrial-type PERC, TOPCon, and SHJ solar cells: A comparative study. Progress in Photovoltaics: Research and Applications, 2024, 32(12): 889–903

[10]

Shen W Z, Ma S, Huang H P. Deep concern about TOPConmodule quality. PV Tech Power, 2024-12-16, available at the website of pv-tech

[11]

Lin H, Yang M, Ru X. . Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nature Energy, 2023, 8(8): 789–799

[12]

Trinasolar. Trinasolar sets new n-type solar cell efficiency world record of 27.08%. 2024-12-20, available at website of Trinasolar

[13]

Liu W, Liu Y, Yang Z. . Flexible solar cells based on foldable silicon wafers with blunted edges. Nature, 2023, 617(7962): 717–723

[14]

Li Y, Ru X, Yang M. . Flexible silicon solar cells with high power-to-weight ratios. Nature, 2024, 626(7997): 105–110

[15]

Wu H, Ye F, Yang M. . Silicon heterojunction back-contact solar cells by laser patterning. Nature, 2024, 635(8039): 604–609

[16]

Long W, Yin S, Peng F. . On the limiting efficiency for silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2021, 231: 111291

[17]

Liu J, He Y, Ding L. . Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature, 2024, 635(8039): 596–603

[18]

LONGi Website. LONGi sets a new efficiency world record of 34.6% for silicon-perovskite tandem solar cells. 2024-6-14, available at website of LONGi

[19]

LONGi Website. LONGi sets a new efficiency world record of 30.1% for silicon-perovskite tandem solar cells on a commercialized size. 2024-6-19, available at website of LONGi

[20]

National Renewable Energy Laboratory (NREL) . Best research-cell efficiency. 2024-10-10, available at website of NREL

[21]

DuanC, Zhang K, PengZ, et al. Durable all inorganic perovskite tandem photovoltaics. Nature, 2024, earear, https://doi.org/10.1038/s41586-024-08432-7

[22]

Liu S, Lu Y, Yu C. . Triple-junction solar cells with cyanate in ultrawide-bandgap perovskites. Nature, 2024, 628(8007): 306–312

[23]

Hu S, Wang J, Zhao P, et al. Steering perovskite precursorsolutions for multijunction photovoltaics. Nature, 2024, early access,

[24]

Wu J, Torresi L, Hu M. . Inverse design workflow discovers hole-transport materials tailored for perovskite solar cells. Science, 2024, 386(6727): 1256–1264

[25]

Qu Z, Zhao Y, Ma F. . Enhanced charge carrier transport and defects mitigation of passivation layer for efficient perovskite solar cells. Nature Communications, 2024, 15(1): 8620

[26]

Chen H, Liu C, Xu J. . Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science, 2024, 384(6692): 189–193

[27]

Liu S, Li J, Xiao W. . Buried interface molecular hybrid for inverted perovskite solar cells. Nature, 2024, 632(8025): 536–542

[28]

Shen W Z, Zhao Y X, Liu F. Highlights of mainstream solar cell efficiencies in 2023. Frontiers in Energy, 2024, 18(1): 8–15

[29]

Li S, Xiao Y, Su R. . Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature, 2024, 635(8040): 874–881

[30]

Yang Y, Chen H, Liu C. . Amidination of ligands for chemical and field-effect passivation stabilizes perovskite solar cells. Science, 2024, 386(6724): 898–902

[31]

Wang X, Li J, Guo R. . Regulating phase homogeneity by self-assembled molecules for enhanced efficiency and stability of inverted perovskite solar cells. Nature Photonics, 2024, 18(12): 1269–1275

[32]

Li J, Liang H, Xiao C. . Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides. Nature Energy, 2024, 9(3): 308–315

[33]

Xiao Y, Yang X, Zhu R. . Unlocking interfaces in photovoltaics. Science, 2024, 384(6698): 846–848

[34]

Qu G, Cai S, Qiao Y. . Conjugated linker-boosted self-assembled monolayer molecule for inverted perovskite solar cells. Joule, 2024, 8(7): 2123–2134

[35]

Jiang W, Wang D, Shang W. . Spin-coated and vacuum-processed hole-extracting self-assembled multilayers with H-aggregation for high-performance inverted perovskite solar cells. Angewandte Chemie International Edition, 2024, 63(45): e202411730

[36]

Zhao K, Liu Q, Yao L. . Peri-fused polyaromatic molecular contacts for perovskite solar cells. Nature, 2024, 632(8024): 301–306

[37]

Peng W, Zhang Y, Zhou X. . A versatile energy-level-tunable hole-transport layer for multi-composition inverted perovskite solar cells. Energy & Environmental Science, 2025, early access:

[38]

Chen P, Xiao Y, Hu J. . Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature, 2024, 625(7995): 516–522

[39]

ZengJ, Liu Z, WangD, et al. Small-molecule hole transport materials for > 26% efficient inverted perovskite solar cells. Journal of the American Chemical Society, 2024, early access, https://doi.org/10.1021/jacs.4c13356

[40]

Ding B, Ding Y, Peng J. . Dopant-additive synergism enhances perovskite solar modules. Nature, 2024, 628(8007): 299–305

[41]

Ding Y, Ding B, Shi P. . Cation reactivity inhibits perovskite degradation in efficient and stable solar modules. Science, 2024, 386(6721): 531–538

[42]

Wang H, Su S, Chen Y. . Impurity-healing interface engineering for efficient perovskite submodules. Nature, 2024, 634(8036): 1091–1095

[43]

Liu X, Zhang J, Wang H. . CsPbI3 perovskite solar module with certified aperture area efficiency > 18% based on ambient-moisture-assisted surface hydrolysis. Joule, 2024, 8(10): 2851–2862

[44]

Chen C, Zhao D. Tandem modules get better. Science, 2024, 383(6685): 829

[45]

Wang Y, Lin R, Liu C. . Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature, 2024, 635(8040): 867–873

[46]

Gao H, Xiao K, Lin R. . Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science, 2024, 383(6685): 855–859

[47]

Guo X, Jia Z, Liu S. . Stabilizing efficient wide-bandgap perovskite in perovskite-organic tandem solar cells. Joule, 2024, 8(9): 2554–2569

[48]

Wu S, Yan Y, Yin J. . Redox mediator-stabilized wide-bandgap perovskites for monolithic perovskite-organic tandem solar cells. Nature Energy, 2024, 9(4): 411–421

[49]

Jiang X, Qin S, Meng L. . Isomeric diammonium passivation for perovskite-organic tandem solar cells. Nature, 2024, 635(8040): 860–866

[50]

Brinkmann K O, Wang P, Lang F. . Perovskite-organic tandem solar cells. Nature Reviews. Materials, 2024, 9(3): 202–217

[51]

Chen Y, Yang N, Zheng G. . Nuclei engineering for even halide distribution in stable perovskite/silicon tandem solar cells. Science, 2024, 385(6708): 554–560

[52]

Ugur E, Said A A, Dally P. . Enhanced cation interaction in perovskites for efficient tandem solar cells with silicon. Science, 2024, 385(6708): 533–538

[53]

Yuan J, Zhang Y, Zhou L. . Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3(4): 1140–1151

[54]

Lin Y, Wang J, Zhang Z G. . An electron acceptor challenging fullerenes for efficient polymer solar cells. Advanced Materials, 2015, 27(7): 1170–1174

[55]

Zhu L, Zhang M, Zhou G. . Achieving 20.8% organic solar cells via additive-assisted layer-by-layer fabrication with bulk pin structure and improved optical management. Joule, 2024, 8(11): 3153–3168

[56]

Gao S, Li X, Cao R. . Hot pure oxygen accelerated oxidation of spiro-OMeTAD for efficient perovskite solar cells with a record certified fill factor exceeding 87%. ACS Energy Letters, 2024, 9(10): 5037–5044

[57]

Li Y, Huang X, Ding K. . Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nature Communications, 2021, 12(1): 5419

[58]

Hußner M, Pacalaj R A, Olaf Müller-Dieckert G. . Machine learning for ultra high throughput screening of organic solar cells: solving the needle in the haystack problem. Advanced Energy Materials, 2024, 14(3): 2303000

[59]

Guan S, Li Y, Xu C. . Self-assembled interlayer enables high-performance organic photovoltaics with power conversion efficiency exceeding 20%. Advanced Materials, 2024, 36(25): 2400342

[60]

Zhu L, Zhang M, Xu J. . Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials, 2022, 21(6): 656–663

[61]

Chen C, Wang L, Xia W. . Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20%. Nature Communications, 2024, 15(1): 6865

[62]

Song J, Li C, Ma H. . Optimizing double-fibril network morphology via solid additive strategy enables binary all-polymer solar cells with 19.50% efficiency. Advanced Materials, 2024, 36(36): 2406922

[63]

Gu H, Zhu J, Chen H. . Mechanics manipulation in large-area organic solar modules achieving over 16.5% efficiency. Giant, 2024, 18: 100286

[64]

Basu R, Gumpert F, Lohbreier J. . Large-area organic photovoltaic modules with 14.5% certified world record efficiency. Joule, 2024, 8(4): 970–978

[65]

National Renewable Energy Laboratory (NREL) . Champion photovoltaic module efficiency. 2025-1-3, available at website of NREL

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (484KB)

8456

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/