Highlights of mainstream solar cell efficiencies in 2023

Wenzhong SHEN , Yixin ZHAO , Feng LIU

Front. Energy ›› 2024, Vol. 18 ›› Issue (1) : 8 -15.

PDF (387KB)
Front. Energy ›› 2024, Vol. 18 ›› Issue (1) : 8 -15. DOI: 10.1007/s11708-024-0937-5
HIGHLIGHTS

Highlights of mainstream solar cell efficiencies in 2023

Author information +
History +
PDF (387KB)

Cite this article

Download citation ▾
Wenzhong SHEN, Yixin ZHAO, Feng LIU. Highlights of mainstream solar cell efficiencies in 2023. Front. Energy, 2024, 18(1): 8-15 DOI:10.1007/s11708-024-0937-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shen W Z, Zhao Y X, Liu F. Highlights of mainstream solar cell efficiencies in 2021. Frontiers in Energy, 2022, 16(1): 1–8

[2]

Shen W Z, Zhao Y X, Liu F. Highlights of mainstream solar cell efficiencies in 2022. Frontiers in Energy, 2023, 17(1): 9–15

[3]

JinkoSolarWebsite. JinkoSolar sets new records for cell, module, and tandem efficiency successively. 2023-11-10

[4]

LONGiWebsite. LONGi sets a new world record of 27.09% for the efficiency of silicon heterojunction back-contact (HBC) solar cells. 2023–12-19

[5]

Schmidt J, Peibst R, Brendel R. Surface passivation of crystalline silicon solar cells: Present and future. Solar Energy Materials and Solar Cells, 2018, 187: 39–54

[6]

Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE Journal of Photovoltaics, 2013, 3(4): 1184–1191

[7]

Aberle A G, Glunz S W, Stephens A W. . High efficiency silicon solar cell: Si/SiO2 interface parameters and their impact on device performance. Progress in Photovoltaics: Research and Applications, 1994, 2(4): 265–273

[8]

Fırat M, Sivaramakrishnan Radhakrishnan H, Singh S. . Industrial metallization of fired passivating contacts for n-type tunnel oxide passivated contact (n-TOPCon) solar cells. Solar Energy Materials and Solar Cells, 2022, 240: 111692

[9]

Kruse C N, Wolf M, Schinke C. . Impact of contacting geometries when measuring fill factors of solar cell current-voltage characteristics. IEEE Journal of Photovoltaics, 2017, 7(3): 747–754

[10]

Chen K J, Hartweg B, Woodhouse M. . Self-aligned selective area front contacts on poly-Si/SiOx passivating contact c-Si solar cells. IEEE Journal of Photovoltaics, 2022, 12(3): 678–689

[11]

Ding D, Lu G L, Li Z P. . High-efficiency n-type silicon PERT bifacial solar cells with selective emitters and poly-Si based passivating contacts. Solar Energy, 2019, 193: 494–501

[12]

Richter A, Benick J, Müller R. . Tunnel oxide passivating electron contacts as full-area rear emitter of high-efficiency p-type silicon solar cells. Progress in Photovoltaics: Research and Applications, 2018, 26(8): 579–586

[13]

Lin W, Chen D, Liu C. . Green-laser-doped selective emitters with separate BBr3 diffusion processes for high-efficiency n-type silicon solar cells. Solar Energy Materials and Solar Cells, 2020, 210: 110462

[14]

Xiao M L, Yang Z H, Liu Z K. . SiOx/polysilicon selective emitter prepared by PECVD-deposited amorphous silicon plus one-step firing enabling excellent J0,met of < 235 fA/cm2 and ρc of < 2 mΩ∙cm2. Solar Energy, 2023, 262: 111887

[15]

Großer S, Krassowski E, Swatek S. . Microscale contact formation by laser enhanced contact optimization. IEEE Journal of Photovoltaics, 2022, 12(1): 26–29

[16]

Fellmeth T, Höffler H, Mack S. . Laser-enhanced contact optimization on iTOPCon solar cells. Progress in Photovoltaics: Research and Applications, 2022, 30(12): 1393–1399

[17]

Padhamnath P, Khanna A, Balaji N. . Progress in screen-printed metallization of industrial solar cells with SiOx/poly-Si passivating contacts. Solar Energy Materials and Solar Cells, 2020, 218: 110751

[18]

Steinhauser B, Polzin J I, Feldmann F. . Excellent surface passivation quality on crystalline silicon using industrial-scale direct-plasma TOPCon deposition technology. Solar RRL, 2018, 2(7): 1800068

[19]

Lin H, Yang M, Ru X. . Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nature Energy, 2023, 8(8): 789–799

[20]

Yu C, Gao K, Peng C W. . Industrial-scale deposition of nanocrystalline silicon oxide for 26.4%-efficient silicon heterojunction solar cells with copper electrodes. Nature Energy, 2023, 8(12): 1375–1385

[21]

Yu J, Li J, Zhao Y. . Copper metallization of electrodes for silicon heterojunction solar cells: Process, reliability and challenges. Solar Energy Materials and Solar Cells, 2021, 224: 110993

[22]

NationalRenewable Energy Laboratory (NREL). Best research—Cell efficiency chart. 2024, available at website of NREL

[23]

Green M A, Dunlop E D, Siefer G. . Solar cell efficiency tables (version 61). Progress in Photovoltaics: Research and Applications, 2023, 31(1): 3–16

[24]

Park J, Kim J, Yun H S. . Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 2023, 616(7958): 724–730

[25]

Green M A, Dunlop E D, Yoshita M. . Solar cell efficiency tables (version 62). Progress in Photovoltaics: Research and Applications, 2023, 31(7): 651–663

[26]

Zhao Y, Ma F, Qu Z. . Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377(6605): 531–534

[27]

Green M A, Dunlop E D, Yoshita M. . Solar cell efficiency tables (version 63). Progress in Photovoltaics: Research and Applications, 2024, 32(1): 3–13

[28]

Peng W, Mao K, Cai F. . Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science, 2023, 379(6633): 683–690

[29]

Liu C, Yang Y, Chen H. . Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science, 2023, 382(6672): 810–815

[30]

Zhang S, Ye F, Wang X. . Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science, 2023, 380(6643): 404–409

[31]

Li Z, Sun X, Zheng X. . Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science, 2023, 382(6668): 284–289

[32]

Park S M, Wei M, Lempesis N. . Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature, 2023, 624(7991): 289–294

[33]

Yu S, Xiong Z, Zhou H. . Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science, 2023, 382(6677): 1399–1404

[34]

Aydin E, Ugur E, Yildirim B K. . Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature, 2023, 623(7988): 732–738

[35]

LiJLiangHXiaoC, . Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides. Nature Energy, 2024, early access, doi:10.1038/s41560-023-01442-1

[36]

Ding Y, Ding B, Kanda H. . Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nature Nanotechnology, 2022, 17(6): 598–605

[37]

Li H, Zhang W. Perovskite tandem solar cells: From fundamentals to commercial deployment. Chemical Reviews, 2020, 120(18): 9835–9950

[38]

Wu P, Thrithamarassery Gangadharan D, Saidaminov M I. . A roadmap for efficient and stable all-perovskite tandem solar cells from a chemistry perspective. ACS Central Science, 2023, 9(1): 14–26

[39]

Lin R, Wang Y, Lu Q. . All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature, 2023, 620(7976): 994–1000

[40]

King Abdullah University of Science and Technology (KAUST). KAUST team sets world record for tandem solar cell efficiency. 2023–4-16, available at website of KAUST

[41]

EmilianoB. KAUST claims 33.7% efficiency for perovskite/silicon tandem solar cell. 2023-5-30, available at website of PV-Magazine

[42]

LONGiWebsite. LONGi sets a new world record of 33.9% for the efficiency of crystalline silicon-perovskite tandem solar cells. 2023–11-3

[43]

De Wolf S, Aydin E. Tandems have the power. Science, 2023, 381(6653): 30–31

[44]

Aydin E, Allen T G, De Bastiani M. . Pathways toward commercial perovskite/silicon tandem photovoltaics. Science, 2024, 383(6679): eadh3849

[45]

Yamamoto K, Mishima R, Uzu H. . High efficiency perovskite/heterojunction crystalline silicon tandem solar cells: Towards industrial-sized cell and module. Japanese Journal of Applied Physics, 2023, 62(SK): SK1021

[46]

OxfordPV Website. Oxford PV sets new solar cell world record. 2023-5-24

[47]

Chen T, Li S, Li Y. . Compromising charge generation and recombination of organic photovoltaics with mixed diluent strategy for certified 19.4% efficiency. Advanced Materials, 2023, 35(21): 2300400

[48]

Bi P, Wang J, Cui Y. . Enhancing photon utilization efficiency for high‐performance organic photovoltaic cells via regulating phase‐transition kinetics. Advanced Materials, 2023, 35(16): 2210865

[49]

Zhu L, Zhang M, Xu J. . Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials, 2022, 21(6): 656–663

[50]

Chen X K, Qian D, Wang Y. . A unified description of non-radiative voltage losses in organic solar cells. Nature Energy, 2021, 6(8): 799–806

[51]

Li C, Zhou J, Song J. . Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6(6): 605–613

[52]

Zeng R, Zhu L, Zhang M. . All-polymer organic solar cells with nano-to-micron hierarchical morphology and large light receiving angle. Nature Communications, 2023, 14(1): 4148

[53]

NationalRenewable Energy Laboratory (NREL). Champion photovoltaic module efficiency chart. 2024

[54]

ValerieT. German researchers claim record-breaking 14.46% efficiency for organic PV module. 2023-12-19, available at website of PV-Magazine

[55]

Liang Y, Zhang D, Wu Z. . Organic solar cells using oligomer acceptors for improved stability and efficiency. Nature Energy, 2022, 7(12): 1180–1190

[56]

IEC 61215-2:2021. Terrestrial photovoltaic (PV) modules — design qualification and type approval: Part 2: Test procedures. 2021–2-24, available at website of IEC

RIGHTS & PERMISSIONS

Higher Education Press 2024

AI Summary AI Mindmap
PDF (387KB)

5175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/