Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich

Zhouyu ZHANG , Hao CHEN , Zhenglin HU , Shoubin ZHOU , Lan ZHANG , Jiayan LUO

Front. Energy ›› 2022, Vol. 16 ›› Issue (5) : 706 -733.

PDF (22536KB)
Front. Energy ›› 2022, Vol. 16 ›› Issue (5) : 706 -733. DOI: 10.1007/s11708-022-0833-9
REVIEW ARTICLE
REVIEW ARTICLE

Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich

Author information +
History +
PDF (22536KB)

Abstract

Solid-state electrolytes (SSEs) can address the safety issue of organic electrolyte in rechargeable lithium batteries. Unfortunately, neither polymer nor ceramic SSEs used alone can meet the demand although great progress has been made in the past few years. Composite solid electrolytes (CSEs) composed of flexible polymers and brittle but more conducting ceramics can take advantage of the individual system for solid-state lithium metal batteries (SSLMBs). CSEs can be largely divided into two categories by the mass fraction of the components: “polymer rich” (PR) and “ceramic rich” (CR) systems with different internal structures and electrochemical properties. This review provides a comprehensive and in-depth understanding of recent advances and limitations of both PR and CR electrolytes, with a special focus on the ion conduction path based on polymer-ceramic interaction mechanisms and structural designs of ceramic fillers/frameworks. In addition, it highlights the PR and CR which bring the leverage between the electrochemical property and the mechanical property. Moreover, it further prospects the possible route for future development of CSEs according to their rational design, which is expected to accelerate the practical application of SSLMBs.

Graphical abstract

Keywords

composite solid electrolytes / active filler/framework / ion conduction path / interphase compatibility / multilayer design

Cite this article

Download citation ▾
Zhouyu ZHANG, Hao CHEN, Zhenglin HU, Shoubin ZHOU, Lan ZHANG, Jiayan LUO. Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich. Front. Energy, 2022, 16(5): 706-733 DOI:10.1007/s11708-022-0833-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews. Materials, 2016, 1( 4): 16013

[2]

Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 2017, 12( 3): 194– 206

[3]

Albertus P, Babinec S, Litzelman S. . Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nature Energy, 2018, 3( 1): 16– 21

[4]

Cheng X B, Zhang R, Zhao C Z. . Toward safe lithium metal anode in rechargeable batteries: a review. Chemical Reviews, 2017, 117( 15): 10403– 10473

[5]

Evarts E C. Lithium batteries: to the limits of lithium. Nature, 2015, 526( 7575): S93– S95

[6]

Yang C, Fu K, Zhang Y. . Protected lithium-metal anodes in batteries: from liquid to solid. Advanced Materials, 2017, 29( 36): 1701169

[7]

Wang S H, Yue J, Dong W. . Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nature Communications, 2019, 10( 1): 4930

[8]

Wang Z, Wang Y, Zhang Z. . Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes. Advanced Functional Materials, 2020, 30( 30): 2002414

[9]

Dornbusch D A, Hilton R, Lohman S D. . Experimental validation of the elimination of dendrite short-circuit failure in secondary lithium-metal convection cell batteries. Journal of the Electrochemical Society, 2015, 162( 3): A262– A268

[10]

Palacín M R, De Guibert A. Why do batteries fail? Science, 2016, 351(6273): 1253292

[11]

Fan P, Liu H, Marosz V. . High performance composite polymer electrolytes for lithium-ion batteries. Advanced Functional Materials, 2021, 31( 23): 2101380

[12]

Samson A J, Hofstetter K, Bag S. . A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy & Environmental Science, 2019, 12( 10): 2957– 2975

[13]

Xu H, Cao G, Shen Y. . Enabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes. Energy & Environmental Materials, 2022, online

[14]

Vinod Chandran C, Pristat S, Witt E. . Solid-state NMR investigations on the structure and dynamics of the ionic conductor Li1+xAlxTi2−x(PO4)3 (0.0 ≤ x ≤ 1.0). Journal of Physical Chemistry C, 2016, 120( 16): 8436– 8442

[15]

Wang J, Wang M, Xiao J. . A microstructure engineered perovskite super anode with Li-storage life of exceeding 10000 cycles. Nano Energy, 2022, 94 : 106972

[16]

Mauger A, Julien C M, Paolella A. . Building better batteries in the solid state: a review. Materials (Basel), 2019, 12( 23): 3892

[17]

Yue L, Ma J, Zhang J. . All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 2016, 5 : 139– 164

[18]

Zhang Q, Liu K, Ding F. . Recent advances in solid polymer electrolytes for lithium batteries. Nano Research, 2017, 10( 12): 4139– 4174

[19]

Yang X, Jiang M, Gao X, et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal–OH group? Energy & Environmental Science, 2020, 13(5): 1318–1325

[20]

Xu L, Li J, Shuai H. . Recent advances of composite electrolytes for solid-state Li batteries. Journal of Energy Chemistry, 2022, 67 : 524– 548

[21]

Chen L, Li Y, Li S P. . PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy, 2018, 46 : 176– 184

[22]

Zheng J, Hu Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Applied Materials & Interfaces, 2018, 10( 4): 4113– 4120

[23]

Huang Z, Tong R A, Zhang J. . Blending poly(ethylene oxide) and Li6.4La3Zr1.4Ta0.6O12 by haake rheomixer without any solvent: a low-cost manufacture method for mass production of composite polymer electrolyte. Journal of Power Sources, 2020, 451 : 227797

[24]

Jiang T, He P, Liang Y. . All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries. Chemical Engineering Journal, 2021, 421 : 129965

[25]

Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. Journal of the Electrochemical Society, 2005, 152( 2): A396– A404

[26]

Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition, 2007, 46( 41): 7778– 7781

[27]

Rettenwander D, Blaha P, Laskowski R. . DFT study of the role of Al3+ in the fast ion-conductor Li7–3xAl3+xLa3Zr2O12 garnet. Chemistry of Materials, 2014, 26( 8): 2617– 2623

[28]

Buannic L, Orayech B, López Del Amo J M. . Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chemistry of Materials, 2017, 29( 4): 1769– 1778

[29]

Zhao C Z, Zhang X Q, Cheng X B. . An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114( 42): 11069– 11074

[30]

Zhang X, Liu T, Zhang S. . Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. Journal of the American Chemical Society, 2017, 139( 39): 13779– 13785

[31]

Li R, Wu D, Yu L. . Unitized configuration design of thermally stable composite polymer electrolyte for lithium batteries capable of working over a wide range of temperatures. Advanced Engineering Materials, 2019, 21( 7): 1900055

[32]

Sun F, Xiang Y, Sun Q. . Origin of high ionic conductivity of Sc-doped sodium-rich NASICON solid-state electrolytes. Advanced Functional Materials, 2021, 31( 31): 2102129

[33]

Li Y, Wang H. Composite solid electrolytes with NASICON-type LATP and PVdF-HFP for solid-state lithium batteries. Industrial & Engineering Chemistry Research, 2021, 60( 3): 1494– 1500

[34]

Wang W, Yi E, Fici A J. . Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. Journal of Physical Chemistry C, 2017, 121( 5): 2563– 2573

[35]

Ma F, Zhang Z, Yan W. . Solid polymer electrolyte based on polymerized ionic liquid for high performance all-solid-state lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 2019, 7( 5): 4675– 4683

[36]

Jia M, Bi Z, Shi C. . Polydopamine coated lithium lanthanum titanate in bilayer membrane electrolytes for solid lithium batteries. ACS Applied Materials & Interfaces, 2020, 12( 41): 46231– 46238

[37]

Xu H, Chien P H, Shi J. . High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116( 38): 18815– 18821

[38]

Dai Z, Yu J, Liu J. . Highly conductive and nonflammable composite polymer electrolytes for rechargeable quasi-solid-state Li-metal batteries. Journal of Power Sources, 2020, 464 : 228182

[39]

Kanno R, Murayama M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2–P2S5 system. Journal of the Electrochemical Society, 2001, 148( 7): A742– A746

[40]

Deiseroth H J, Kong S T, Eckert H. . Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angewandte Chemie International Edition, 2008, 47( 4): 755– 758

[41]

Kamaya N, Homma K, Yamakawa Y. . A lithium superionic conductor. Nature Materials, 2011, 10( 9): 682– 686

[42]

Kato Y, Hori S, Saito T. . High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy, 2016, 1( 4): 16030

[43]

Nikodimos Y, Huang C J, Taklu B W. . Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy & Environmental Science, 2022, 15( 3): 991– 1033

[44]

Li Y, Arnold W, Thapa A. . Stable and flexible sulfide composite electrolytes for high-performance solid-state lithium batteries. ACS Applied Materials & Interfaces, 2020, 12( 38): 42653– 42659

[45]

Cong L, Li Y, Lu W. . Unlocking the poly(vinylidene fluoride-co-hexafluoropropylene)/Li10GeP2S12 composite solid-state electrolytes for dendrite-free Li metal batteries assisting with perfluoropolyethers as bifunctional adjuvant. Journal of Power Sources, 2020, 446 : 227365

[46]

Pan K, Zhang L, Qian W. . A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Advanced Materials, 2020, 32( 17): 2000399

[47]

Matsuo M, Nakamori Y, Orimo S I. . Lithium superionic conduction in lithium borohydride accompanied by structural transition. Applied Physics Letters, 2007, 91( 22): 224103

[48]

Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews. Materials, 2017, 2( 4): 16103

[49]

Cuan J, Zhou Y, Zhou T. . Borohydride-scaffolded Li/Na/Mg fast ionic conductors for promising solid-state electrolytes. Advanced Materials, 2019, 31( 1): 1803533

[50]

Zhang X, Zhang T, Shao Y. . Composite electrolytes based on poly(ethylene oxide) and lithium borohydrides for all-solid-state lithium-sulfur batteries. ACS Sustainable Chemistry & Engineering, 2021, 9( 15): 5396– 5404

[51]

Bao K, Pang Y, Yang J. . Modulating composite polymer electrolyte by lithium closo-borohydride achieves highly stable solid-state battery at 25 °C. Science China Materials, 2022, 65( 1): 95– 104

[52]

Hu C, Shen Y, Shen M. . Superionic conductors via bulk interfacial conduction. Journal of the American Chemical Society, 2020, 142( 42): 18035– 18041

[53]

Fan R, Liu C, He K. . Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers. ACS Applied Materials & Interfaces, 2020, 12( 6): 7222– 7231

[54]

Yang T, Zheng J, Cheng Q. . Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Applied Materials & Interfaces, 2017, 9( 26): 21773– 21780

[55]

Li B, Su Q, Yu L. . Li0.35La0.55TiO3 nanofibers enhanced poly(vinylidene fluoride)-based composite polymer electrolytes for all-solid-state batteries. ACS Applied Materials & Interfaces, 2019, 11( 45): 42206– 42213

[56]

Liu W, Lee S W, Lin D. . Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nature Energy, 2017, 2( 5): 17035

[57]

Song S, Wu Y, Tang W. . Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide). ACS Sustainable Chemistry & Engineering, 2019, 7( 7): 7163– 7170

[58]

Cheng J, Hou G, Chen Q. . Sheet-like garnet structure design for upgrading PEO-based electrolyte. Chemical Engineering Journal, 2022, 429 : 132343

[59]

Bae J, Li Y, Zhang J. . A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angewandte Chemie International Edition, 2018, 57( 8): 2096– 2100

[60]

Xu Z, Zhang H, Yang T. . Physicochemically dendrite-suppressed three-dimensional fluoridation solid-state electrolyte for high-rate lithium metal battery. Cell Reports Physical Science, 2021, 2( 11): 100644

[61]

Wang X, Zhai H, Qie B. . Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy, 2019, 60 : 205– 212

[62]

Song S, Qin X, Ruan Y. . Enhanced performance of solid-state lithium-air batteries with continuous 3D garnet network added composite polymer electrolyte. Journal of Power Sources, 2020, 461 : 228146

[63]

Zhang Y, He X, Chen Z. . Unsupervised discovery of solid-state lithium ion conductors. Nature Communications, 2019, 10( 1): 5260

[64]

Zekoll S, Marriner-Edwards C, Hekselman A K O. . Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy & Environmental Science, 2018, 11( 1): 185– 201

[65]

Yang H, Tay K, Xu Y. . Nitrogen-doped lithium lanthanum titanate nanofiber-polymer composite electrolytes for all-solid-state lithium batteries. Journal of the Electrochemical Society, 2021, 168( 11): 110507

[66]

Zhu P, Yan C, Dirican M. . Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6( 10): 4279– 4285

[67]

Zhai H, Xu P, Ning M. . A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Letters, 2017, 17( 5): 3182– 3187

[68]

Chen W P, Duan H, Shi J L. . Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte. Journal of the American Chemical Society, 2021, 143( 15): 5717– 5726

[69]

Huang Z, Pang W, Liang P. . A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: enhanced thermal and electrochemical properties. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2019, 7( 27): 16425– 16436

[70]

Wang C, Yu R, Duan H. . Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes. ACS Energy Letters, 2022, 7( 1): 410– 416

[71]

Ahmed S A, Pareek T, Dwivedi S. . Fast Li+ conduction in (PEO+LiClO4) incorporated LiSn2(PO4)3 polymer-in-ceramic solid electrolyte. In: AIP Conference Proceedings, 2020, 2265 : 030596

[72]

Ahmed S A, Pareek T, Dwivedi S. . LiSn2(PO4)3-based polymer-in-ceramic composite electrolyte with high ionic conductivity for all-solid-state lithium batteries. Journal of Solid State Electrochemistry, 2020, 24( 10): 2407– 2417

[73]

Zhang K, Mu S, Liu W. . A flexible NASICON-type composite electrolyte for lithium-oxygen/air battery. Ionics, 2019, 25( 1): 25– 33

[74]

Jiang Z, Wang S, Chen X. . Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Advanced Materials, 2020, 32( 6): 1906221

[75]

Yu S, Xu Q, Lu X. . Single-ion-conducting “polymer-in-ceramic” hybrid electrolyte with an intertwined NASICON-type nanofiber skeleton. ACS Applied Materials & Interfaces, 2021, 13( 51): 61067– 61077

[76]

Meziane R, Bonnet J P, Courty M. . Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochimica Acta, 2011, 57 : 14– 19

[77]

Yan C, Zhu P, Jia H. . Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries. Energy Storage Materials, 2020, 26 : 448– 456

[78]

Guo S, Kou W, Wu W. . Thin laminar inorganic solid electrolyte with high ionic conductance towards high-performance all-solid-state lithium battery. Chemical Engineering Journal, 2022, 427 : 131948

[79]

Bae J, Li Y, Zhao F. . Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Materials, 2018, 15 : 46– 52

[80]

Cai D, Wang D, Chen Y. . A highly ion-conductive three-dimensional LLZAO-PEO/LiTFSI solid electrolyte for high-performance solid-state batteries. Chemical Engineering Journal, 2020, 394 : 124993

[81]

Wang S, Li Q, Bai M. . A dendrite-suppressed flexible polymer-in-ceramic electrolyte membrane for advanced lithium batteries. Electrochimica Acta, 2020, 353 : 136604

[82]

Wu J, Wu X, Wang W. . Dense PVDF-type polymer-in-ceramic electrolytes for solid state lithium batteries. RSC Advances, 2020, 10( 38): 22417– 22421

[83]

Jiang T, He P, Wang G. . Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Advanced Energy Materials, 2020, 10( 12): 1903376

[84]

Nkosi F P, Valvo M, Mindemark J. . Garnet-poly(ε-caprolactone-co-trimethylene carbonate) polymer-in-ceramic composite electrolyte for all-solid-state lithium-ion batteries. ACS Applied Energy Materials, 2021, 4( 3): 2531– 2542

[85]

Wang Z, Zhang P, Jia Y. . Dimethyl carbonate adsorption enabling enhanced overall electrochemical properties for solid composite electrolyte. Journal of Alloys and Compounds, 2021, 853 : 157340

[86]

Wang B, Wang G, He P. . Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries. Journal of Membrane Science, 2022, 642 : 119952

[87]

Zhang B, Liu Y, Liu J. . “Polymer-in-ceramic” based poly(ε-caprolactone)/ceramic composite electrolyte for all-solid-state batteries. Journal of Energy Chemistry, 2021, 52 : 318– 325

[88]

Bonizzoni S, Ferrara C, Berbenni V. . NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries. Physical Chemistry Chemical Physics, 2019, 21( 11): 6142– 6149

[89]

Menkin S, Lifshitz M, Haimovich A. . Evaluation of ion-transport in composite polymer-in-ceramic electrolytes. Case study of active and inert ceramics. Electrochimica Acta, 2019, 304 : 447– 455

[90]

Jiang H, Wu Y, Ma J. . Ultrathin polymer-in-ceramic and ceramic-in-polymer bilayer composite solid electrolyte membrane for high-voltage lithium metal batteries. Journal of Membrane Science, 2021, 640 : 119840

[91]

Zhang N, Wang G, Feng M. . In situ generation of a soft-tough asymmetric composite electrolyte for dendrite-free lithium metal batteries. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2021, 9( 7): 4018– 4025

[92]

Huo H, Chen Y, Luo J. . Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Advanced Energy Materials, 2019, 9( 17): 1804004

[93]

Li B, Su Q, Liu C. . Stable interface of a high-energy solid-state lithium metal battery via a sandwich composite polymer electrolyte. Journal of Power Sources, 2021, 496 : 229835

[94]

Ling H, Shen L, Huang Y. . Integrated structure of cathode and double-layer electrolyte for highly stable and dendrite-free all-solid-state Li-metal batteries. ACS Applied Materials & Interfaces, 2020, 12( 51): 56995– 57002

[95]

Liu K, Zhang R, Sun J. . Polyoxyethylene (PEO)|PEO-perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. ACS Applied Materials & Interfaces, 2019, 11( 50): 46930– 46937

[96]

Li B, Su Q, Yu L. . Ultrathin, flexible, and sandwiched structure composite polymer electrolyte membrane for solid-state lithium batteries. Journal of Membrane Science, 2021, 618 : 118734

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (22536KB)

9126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/