Energy and economic analysis of a point-focus concentrating photovoltaic system when its installation site varies

C. RENNO , A. PERONE

Front. Energy ›› 2021, Vol. 15 ›› Issue (2) : 384 -395.

PDF (977KB)
Front. Energy ›› 2021, Vol. 15 ›› Issue (2) : 384 -395. DOI: 10.1007/s11708-020-0717-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Energy and economic analysis of a point-focus concentrating photovoltaic system when its installation site varies

Author information +
History +
PDF (977KB)

Abstract

The concentrating photovoltaic (CPV) systems are a promising technology to obtain clean energy. However, these systems are not equally convenient worldwide due to different climatic conditions. The main aim of this paper is to analyze energy and economic performances of a point-focus CPV system for a residential user when its installation site varies. Three locations, Riyadh, Copenhagen, and Palermo, characterized by very different weather conditions are chosen. A model that links the electrical power of a triple-junction (TJ) cell with its temperature and concentrated radiation incident on it is experimentally developed to evaluate the energy performance of the CPV system. A comparison of the three localities for typical winter and summer sunny days indicates that the higher values of the TJ cell temperature are reached in summer, over 70°C at Riyadh, and its electrical power is reduced compared to a winter day. In winter, a TJ cell in Riyadh supplies an electric power of about 20% higher than that in other two cities, while in summer, the maximum power is observed at Copenhagen. On the contrary, the electrical producibility also depends on the sunlight daily hours number during the year. Hence, considering the real distribution of direct normal irradiance (DNI) and the environmental temperature for each locality, a CPV system composed of modules of 90 cells adopted for a residential user is sized. The electric producibility of the CPV system, by varying its module number, is evaluated for different localities together with the optimal number of the modules which is able to maximize the investment profitability.

Graphical abstract

Keywords

CPV system / point-focus / experimental model / energy and economic analysis

Cite this article

Download citation ▾
C. RENNO, A. PERONE. Energy and economic analysis of a point-focus concentrating photovoltaic system when its installation site varies. Front. Energy, 2021, 15(2): 384-395 DOI:10.1007/s11708-020-0717-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rejeb O, Shittu S, Ghenai C, Optimization and performance analysis of a solar concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system. Renewable Energy, 2020, 152: 1342–1353

[2]

Burhan M, Shahzad M W, Oh S J, Long term electrical rating of concentrated photovoltaic (CPV) systems in Singapore. Energy Procedia, 2019, 158: 73–78

[3]

Bellos E, Tzivanidis C, Antonopoulos K A, Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renewable Energy, 2016, 94: 213–222

[4]

Soni M S, Gakkhar N. Techno-economic parametric assessment of solar power in India: a survey. Renewable & Sustainable Energy Reviews, 2014, 40: 326–334

[5]

Wang G, Wang F, Shen F, Experimental and optical performances of a solar CPV device using a linear Fresnel reflector concentrator. Renewable Energy, 2020, 146: 2351–2361

[6]

Wang G, Chen Z, Hu P, Design and optical analysis of the band-focus Fresnel lens solar concentrator. Applied Thermal Engineering, 2016, 102: 695–700

[7]

Renno C. Thermal and electrical modelling of a CPV/T system varying its configuration. Journal of Thermal Science, 2019, 28(1): 123–132

[8]

García-Domingo B Piliougine M, Elizondo D CPV module electric characterisation by artificial neural networks. Renewable Energy, 2015, 78: 173–181

[9]

Xu N, Ji J, Sun W, Outdoor performance analysis of a 1090× point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells. Energy Conversion and Management, 2015, 100: 191–200

[10]

Renno C. Experimental and theoretical analysis of a linear focus CPV/T system for cogeneration purposes. Energies, 2018, 11(11): 2960

[11]

Burhan M, Shahzad M W, Ng K C. Sustainable cooling with hybrid concentrated photovoltaic thermal (CPVT) system and hydrogen energy storage. International Journal of Computational Physics Series, 2018, 1(2): 40–51

[12]

Marques Filho E P, Oliveira A P, Vita W A, Global, diffuse and direct solar radiation at the surface in the city of Rio de Janeiro: observational characterization and empirical modeling. Renewable Energy, 2016, 91: 64–74

[13]

Renno C, Petito F. Choice model for a modular configuration of a point-focus CPV/T system. Energy and Buildings, 2015, 92: 55–66

[14]

Alves P, Fernandes J F, Torres J P N, From Sweden to Portugal: the effect of very distinct climate zones on energy efficiency of a concentrating photovoltaic/thermal system (CPV/T). Solar Energy, 2019, 188: 96–110

[15]

Lokeswaran S, Mallick T K, Reddy K S. Design and analysis of dense array CPV receiver for square parabolic dish system with CPC array as secondary concentrator. Solar Energy, 2020, 199: 782–795

[16]

Renno C, Petito F, Landi G, Neitzert H C. Experimental characterization of a concentrating photovoltaic system varying the light concentration. Energy Conversion and Management, 2017, 138: 119–130

[17]

Burhan M, Shahzad M W, Ng K C. Long-term performance potential of concentrated photovoltaic (CPV) systems. Energy Conversion and Management, 2017, 148: 90–99

[18]

Wang G, Wang F, Shen F, Novel design and thermodynamic analysis of a solar concentration PV and thermal combined system based on compact linear Fresnel reflector. Energy, 2019, 180: 133–148

[19]

Han X, Xu C, Ju X, Energy analysis of a hybrid solar concentrating photovoltaic/concentrating solar power (CPV/CSP) system. Science Bulletin, 2015, 60(4): 460–469

[20]

Han X, Zhao G, Xu C, Parametric analysis of a hybrid solar concentrating photovoltaic/concentrating solar power (CPV/CSP) system. Applied Energy, 2017, 189: 520–533

[21]

Aprea C, Renno C. An experimental analysis of a thermodynamic model of a vapour compression refrigeration plant on varying the compressor speed. International Journal of Energy Research, 2004, 28(6): 537–549

[22]

The Joint Research Centre. Photovoltaic geographical information system (PVGIS), 2020–05–08

[23]

The Math Works, Inc. MATLAB R2019a, 1994–2020. Massachusetts, USA

[24]

Aprea C, Renno C. An air cooled tube-fin evaporator model for an expansion valve control law. Mathematical and Computer Modelling, 1999, 30(7-8): 135–146

[25]

Renno C, Landi G, Petito F, Influence of a degraded triple-junction solar cell on the CPV system performances. Energy Conversion and Management, 2018, 160: 326–340

[26]

Xu N, Ji J, Sun W, Outdoor performance analysis of a 1090× point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells. Energy Conversion and Management, 2015, 100: 191–200

[27]

Aprea C, Renno C. A numerical approach to a very fast thermal transient in an air cooling evaporator. Applied Thermal Engineering, 2002, 22(2): 219–228

[28]

Francesca T (GSE), Giosuè M (RSE). National survey report of PV power applications in Italy–2018. 2019

[29]

Renno C, Petito F. Triple-junction cell temperature evaluation in a CPV system by means of a Random-Forest model. Energy Conversion and Management, 2018, 169: 124–136

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (977KB)

2432

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/