Leidenfrost drops on micro/nanostructured surfaces

Vishal TALARI , Prakhar BEHAR , Yi LU , Evan HARYADI , Dong LIU

Front. Energy ›› 2018, Vol. 12 ›› Issue (1) : 22 -42.

PDF (1392KB)
Front. Energy ›› 2018, Vol. 12 ›› Issue (1) : 22 -42. DOI: 10.1007/s11708-018-0541-7
REVIEW ARTICLE
REVIEW ARTICLE

Leidenfrost drops on micro/nanostructured surfaces

Author information +
History +
PDF (1392KB)

Abstract

In the Leidenfrost state, the liquid drop is levitated above a hot solid surface by a vapor layer generated via evaporation from the drop. The vapor layer thermally insulates the drop from the heating surface, causing deteriorated heat transfer in a myriad of important engineering applications. Thus, it is highly desirable to suppress the Leidenfrost effect and elevate the Leidenfrost temperature. This paper presents a comprehensive review of recent literature concerning the Leidenfrost drops on micro/nanostructured surfaces with an emphasis on the enhancement of the Leidenfrost temperature. The basic physical processes of the Leidenfrost effect and the key characteristics of the Leidenfrost drops were first introduced. Then, the major findings of the influence of various micro/nanoscale surface structures on the Leidenfrost temperature were presented in detail, and the underlying enhancement mechanism for each specific surface topology was also discussed. It was concluded that multiscale hierarchical surfaces hold the best promise to significantly boost the Leidenfrost temperature by combining the advantages of both micro- and nanoscale structures.

Keywords

Leidenfrost drop / Leidenfrost temperature / heat transfer enhancement / micro/nanostructured surfaces

Cite this article

Download citation ▾
Vishal TALARI, Prakhar BEHAR, Yi LU, Evan HARYADI, Dong LIU. Leidenfrost drops on micro/nanostructured surfaces. Front. Energy, 2018, 12(1): 22-42 DOI:10.1007/s11708-018-0541-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Leidenfrost J G. On the fixation of water in diverse fire. International Journal of Heat and Mass Transfer, 1966, 9(11): 1153–1166

[2]

Hall D D, Mudawar I, Morgan R E, Ehlers S L. Validation of a systematic approach to modeling spray quenching of aluminum alloy extrusions, composites, and continuous castings. Journal of Materials Engineering and Performance, 1997, 6(1): 77–92

[3]

Rein M. Interactions between drops and hot surfaces. In: Rein M. Drop-Surface Interactions. Vienna: Springer, 2002, 456: 185–217

[4]

Vorster W J J, Schwindt S A, Schupp J, Korsunsky A M. Analysis of the spray field development on a vertical surface during water spray-quenching using a flat spray nozzle. Applied Thermal Engineering, 2009, 29(7): 1406–1416

[5]

Zhang Y, Jia M, Liu H, Xie M, Wang T. Investigation of the characteristics of fuel adhesion formed by spray/wall interaction under diesel premixed charge compression ignition (PCCI) relevant conditions. Atomization and Sprays, 2015, 25(11): 933–968

[6]

Liang G T, Mudawar I. Review of drop impact on heated walls. International Journal of Heat and Mass Transfer, 2017, 106: 103–126

[7]

Gottfried B S, Bell K J. Film boiling of spheroidal droplets. Leidenfrost phenomenon. Industrial & Engineering Chemistry Fundamentals, 1966, 5(4): 561–568

[8]

Bernardin J D, Mudawar I. The Leidenfrost point: experimental study and assessment of existing models. Journal of Heat Transfer, 1999, 121(4): 894–903

[9]

Emmerson G S. The effect of pressure and surface material on the Leidenfrost point of discrete drops of water. International Journal of Heat and Mass Transfer, 1975, 18(3): 381–386

[10]

Kandlikar S G, Steinke M E. Contact angles and interface behavior during rapid evaporation of liquid on a heated surface. International Journal of Heat and Mass Transfer, 2002, 45(18): 3771–3780

[11]

Takata Y, Hidaka S, Cao J M, Nakamura T, Yamamoto H, Masuda M, Ito T. Effect of surface wettability on boiling and evaporation. Energy, 2005, 30(2–4): 209–220

[12]

Vakarelski I U, Patankar N A, Marston J O, Chan D Y C, Thoroddsen S T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature, 2012, 489(7415): 274–277

[13]

Quéré D. Wetting and roughness. Annual Review of Materials Research, 2008, 38(1): 71–99

[14]

Bradfield W S. Liquid-solid contact in stable film boiling. Industrial & Engineering Chemistry Fundamentals, 1966, 5(2): 200–204

[15]

Kim H, Buongiorno J, Hu L W, McKrell T. Nanoparticle deposition effects on the minimum heat flux point and quench front speed during quenching in water-based alumina nanofluids. International Journal of Heat and Mass Transfer, 2010, 53(7–8): 1542–1553

[16]

Zhong L, Guo Z. Effect of surface topography and wettability on the Leidenfrost effect. Nanoscale, 2017, 9(19): 6219–6236

[17]

Ko Y S, Chung S H. An experiment on the breakup of impinging droplets on a hot surface. Experiments in Fluids, 1996, 21(2): 118–123

[18]

Naber J D, Farrell P V. Hydrodynamics of droplet impingement on a heated surface. SAE Technical Paper, 1993, 930919

[19]

Quéré D. Leidenfrost dynamics. Annual Review of Fluid Mechanics, 2013, 45(1): 197–215

[20]

Mahadevan L, Pomeau Y. Rolling droplets. Physics of Fluids, 1999, 11(9): 2449–2453

[21]

Johnson K L. Contact Mechanics. New York: Cambridge University Press, 1987

[22]

Aussillous P, Quéré D. Properties of liquid marbles. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 973–999

[23]

Gottfried B S, Lee C J, Bell K J. Leidenfrost phenomenon-film boiling of liquid droplets on a flat plate. International Journal of Heat and Mass Transfer, 1966, 9(11): 1167–1188

[24]

Avedisian C T, Koplik J. Leidenfrost boiling of methanol droplets on hot porous/ceramic surfaces. International Journal of Heat and Mass Transfer, 1987, 30(2): 379–393

[25]

Biance A L, Clanet C, Quéré D. Leidenfrost drops. Physics of Fluids, 2003, 15(6): 1632–1637

[26]

Snoeijer J H, Brunet P, Eggers J. Maximum size of drops levitated by an air cushion. Physical Review. E, Statistical, Nonlinear, Biological and Soft Matter Physics 2009, 79(3): 036307

[27]

Burton J C, Sharpe A L, van der Veen R C A, Franco A, Nagel S R. Geometry of the vapor layer under a Leidenfrost drop. Physical Review Letters, 2012, 109(7): 074301

[28]

Snezhko A, Ben Jacob E, Aranson I S. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets. New Journal of Physics, 2008, 10(4): 043034

[29]

Holter N J, Glasscock W R. Vibrations of evaporating liquid drops. Journal of the Acoustical Society of America, 1952, 24(6): 682–686

[30]

Paul G, Manna I, Das P K. Formation, growth, and eruption cycle of vapor domes beneath a liquid puddle during Leidenfrost phenomena. Applied Physics Letters, 2013, 103(8): 084101

[31]

Ma X, Liétor-Santos J J, Burton J C. Star-shaped oscillations of Leidenfrost drops. Physical Review Fluids, 2017, 2(3): 031602

[32]

Tamura Z, Tanasawa Y. Evaporation and combustion of a drop contacting with a hot surface. Symposium (International) on Combustion, 1958, 7(1): 509–522

[33]

Tran T, Staat H J J, Prosperetti A, Sun C, Lohse D. Drop impact on superheated surfaces. Physical Review Letters, 2012, 108(3): 036101

[34]

Tran T, Staat H J J, Susarrey-Arce A, Foertsch T C, van Houselt A, Gardeniers H, Prosperetti A, Lohse D, Sun C. Droplet impact on superheated micro-structured surfaces. Soft Matter, 2013, 9(12): 3272–3282

[35]

Rein M. Drop-surface Interactions. New York: Springer Wien, 2002

[36]

Yagov V V, Lexin M A, Zabirov A R, Kaban’kov O N. Film boiling of subcooled liquids. Part I: Leidenfrost phenomenon and experimental results for subcooled water. International Journal of Heat and Mass Transfer, 2016, 100: 908–917

[37]

Liang G, Mudawar I. Review of spray cooling–Part 2: high temperature boiling regimes and quenching applications. International Journal of Heat and Mass Transfer, 2017, 115: 1206–1222

[38]

Baumeister K J, Simon F F. Leidenfrost temperature—its correlation for liquid metals, cryogens, hydrocarbons, and water. Journal of Heat Transfer, 1973, 95(2): 166–173

[39]

Liang G, Mudawar I. Review of drop impact on heated walls. International Journal of Heat and Mass Transfer, 2017, 106: 103–126

[40]

Berenson P J. Film-boiling heat transfer from a horizontal surface. Journal of Heat Transfer, 1961, 83(3): 351–356

[41]

Zuber N. On the stability of boiling heat transfer. Transactions of the American Society of Mechanical Engineers, 1958, 80: 711–716

[42]

Yao S C, Henry R E. An investigation of the minimum film boiling temperature on horizontal surfaces. Journal of Heat Transfer, 1978, 100(2): 260–267

[43]

Spiegler P, Hopenfeld J, Silberberg M, Bumpus C F Jr, Norman A. Onset of stable film boiling and the foam limit. International Journal of Heat and Mass Transfer, 1963, 6(11): 987–989

[44]

Schroeder-Richter D, Bartsch G. The Leidenfrost phenomenon caused by a thermo-mechanical effect of transition boiling: a revisited problem of non-equilibrium thermodynamics. Fundamentals of Phase Change: Boiling and Condensation, 1990, 13–20

[45]

Olek S, Zvirin Y, Elias E. The relation between the rewetting temperature and the liquid-solid contact angle. International Journal of Heat and Mass Transfer, 1988, 31(4): 898–902

[46]

Segev A, Bankoff S G. The role of adsorption in determining the minimum film boiling temperature. International Journal of Heat and Mass Transfer, 1980, 23(5): 637–642

[47]

Bernardin J D, Mudawar I. A cavity activation and bubble growth model of the Leidenfrost point. Journal of Heat Transfer, 2002, 124(5): 864–874

[48]

Ahn H S, Jo H J, Kang S H, Kim M H. Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling. Applied Physics Letters, 2011, 98(7): 071908

[49]

Dong L, Quan X, Cheng P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures. International Journal of Heat and Mass Transfer, 2014, 71(4): 189–196

[50]

Bernardin J D, Stebbins C J, Mudawar I. Effects of surface roughness on water droplet impact history and heat transfer regimes. International Journal of Heat and Mass Transfer, 1996, 40(1): 73– 88

[51]

Bernardin J D, Mudawar I. A Leidenfrost point model for impinging droplets and sprays. Journal of Heat Transfer, 2004, 126(2): 272–278

[52]

Elbahri M, Paretkar D, Hirmas K, Jebril S, Adelung R. Anti-lotus effect for nanostructuring at the Leidenfrost temperature. Advanced Materials, 2007, 19(9): 1262–1266

[53]

Cui Q, Chandra S, McCahan S. The effect of dissolving salts in water sprays used for quenching a hot surface: Part 2—spray cooling. Journal of Heat Transfer, 2003, 125(2): 333–338

[54]

Abdalrahman K H M, Sabariman, Specht E. Influence of salt mixture on the heat transfer during spray cooling of hot metals. International Journal of Heat and Mass Transfer, 2014, 78(7): 76–83

[55]

Huang C K, Carey V P. The effects of dissolved salt on the Leidenfrost transition. International Journal of Heat and Mass Transfer, 2007, 50(1): 269–282

[56]

Kim H, Truong B, Buongiorno J, Hu L W. On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena. Applied Physics Letters, 2011, 98(8): 083121

[57]

Kwon H M, Bird J C, Varanasi K K. Increasing Leidenfrost point using micro-nano hierarchical surface structures. Applied Physics Letters, 2013, 103(20): 201601

[58]

Feng R, Wu X, Xue Q. Profile characterization and temperature dependence of droplet control on textured surfaces. Chinese Science Bulletin, 2011, 56(18): 1930–1934

[59]

Arnaldo del Cerro D, Marín Á G, Römer G R B E, Pathiraj B, Lohse D, Huis in’t Veld A J. Leidenfrost point reduction on micropatterned metallic surfaces. Langmuir, 2012, 28(42): 15106–15110

[60]

Park I W, Fernandino M, Dorao C A. Effect of micropillar characteristics on Leidenfrost temperature of impacting droplets. In: Proceedings of ASME 14th International Conference on Nanochannels, Microchannels and Minichannels, Washington, USA, 2016

[61]

Hays R, Maynes D, Crockett J. Thermal transport to droplets on heated superhydrophobic substrates. International Journal of Heat and Mass Transfer, 2016, 98: 70–80

[62]

Nair H, Staat H J J, Tran T, van Houselt A, Prosperetti A, Lohse D, Sun C. The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces. Soft Matter, 2014, 10(13): 2102–2109

[63]

Weickgenannt C M, Zhang Y, Sinha-Ray S, Roisman I V, Gambaryan-Roisman T, Tropea C, Yarin A L. Inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces. Physical Review. E, Statistical, Nonlinear, Biological, and Soft Matter Physics, 2011, 84(3): 036310

[64]

Weickgenannt C M, Zhang Y, Lembach A N, Roisman I V, Gambaryan-Roisman T, Yarin A L, Tropea C. Nonisothermal drop impact and evaporation on polymer nanofiber mats. Physical Review. E, Statistical, Nonlinear, Biological, and Soft Matter Physics , 2011, 83(3): 036305

[65]

Sinha-Ray S, Zhang Y, Yarin A L. Thorny devil nanotextured fibers: the way to cooling rates on the order of 1 kW/cm2. Langmuir, 2011, 27(1): 215–226

[66]

Kim S H, Ahn H S, Kim J, Kaviany M, Kim M H. Dynamics of water droplet on a heated nanotubes surface. Applied Physics Letters, 2013, 102(23): 233901

[67]

Auliano M, Fernandino M, Zhang P, Dorao C A.The Leidenfrost phenomenon on silicon nanowires. In: Proceeding ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels, Washington, USA, 2016

[68]

Agapov R L, Boreyko J B, Briggs D P, Srijanto B R, Retterer S T, Collier C P, Lavrik N V. Asymmetric wettability of nanostructures directs Leidenfrost droplets. ACS Nano, 2014, 8(1): 860–867

[69]

Kruse C, Anderson T, Wilson C, Zuhlke C, Alexander D, Gogos G, Ndao S. Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces. Langmuir, 2013, 29(31): 9798–9806

[70]

Lee G C, Kang J Y, Park H S, Moriyama K, Kim S H, Kim M H. Induced liquid-solid contact via micro/nano multiscale texture on a surface and its effect on the Leidenfrost temperature. Experimental Thermal and Fluid Science, 2017, 84: 156–164

[71]

Farokhnia N, Sajadi S M, Irajizad P, Ghasemi H. Decoupled hierarchical structures for suppression of Leidenfrost phenomenon. Langmuir: the ACS Journal of Surfaces & Colloids, 2017, 33(10): 2541–2550

[72]

Fatehi M, Kaviany M. Analysis of levitation of saturated liquid droplets on permeable surfaces. International Journal of Heat and Mass Transfer, 1990, 33(5): 983–994

[73]

Chabičovský M, Hnízdil M, Tseng A A, Raudenský M. Effects of oxide layer on Leidenfrost temperature during spray cooling of steel at high temperatures. International Journal of Heat and Mass Transfer, 2015, 88: 236–246

[74]

Yu Z, Wang F, Fan L S. Experimental and numerical studies of water droplet impact on a porous surface in the film-boiling regime. Industrial & Engineering Chemistry Research, 2008, 47(23): 9174–9182

[75]

Hu H, Xu C, Zhao Y, Shaeffer R, Ziegler K J, Chung J N. Modification and enhancement of cryogenic quenching heat transfer by a nanoporous surface. International Journal of Heat and Mass Transfer, 2015, 80(5): 636–643

[76]

Geraldi N R, McHale G, Xu B, Wells G G, Dodd L E, Wood D, Newton M I. Leidenfrost transition temperature for stainless steel meshes. Materials Letters, 2016, 176: 205–208

[77]

Sajadi S M, Irajizad P, Kashyap V, Farokhnia N, Ghasemi H. Surfaces for high heat dissipation with no Leidenfrost limit. Applied Physics Letters, 2017, 111(2): 021605

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1392KB)

4427

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/