Largely reduced cross-plane thermal conductivity of nanoporous In0.1Ga0.9N thin films directly grown by metal organic chemical vapor deposition

Dongchao XU , Quan WANG , Xuewang WU , Jie ZHU , Hongbo ZHAO , Bo XIAO , Xiaojia WANG , Xiaoliang WANG , Qing HAO

Front. Energy ›› 2018, Vol. 12 ›› Issue (1) : 127 -136.

PDF (296KB)
Front. Energy ›› 2018, Vol. 12 ›› Issue (1) : 127 -136. DOI: 10.1007/s11708-018-0519-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Largely reduced cross-plane thermal conductivity of nanoporous In0.1Ga0.9N thin films directly grown by metal organic chemical vapor deposition

Author information +
History +
PDF (296KB)

Abstract

In recent year, nanoporous Si thin films have been widely studied for their potential applications in thermoelectrics, in which high thermoelectric performance can be obtained by combining both the dramatically reduced lattice thermal conductivity and bulk-like electrical properties. Along this line, a high thermoelectric figure of merit (ZT) is also anticipated for other nanoporous thin films, whose bulk counterparts possess superior electrical properties but also high lattice thermal conductivities. Numerous thermoelectric studies have been carried out on Si-based nanoporous thin films, whereas cost-effective nitrides and oxides are not systematically studied for similar thermoelectric benefits. In this work, the cross-plane thermal conductivities of nanoporous In0.1Ga0.9N thin films with varied porous patterns were measured with the time-domain thermoreflectance technique. These alloys are suggested to have better electrical properties than conventional SixGe1−x alloys; however, a high ZT is hindered by their intrinsically high lattice thermal conductivity, which can be addressed by introducing nanopores to scatter phonons. In contrast to previous studies using dry-etched nanopores with amorphous pore edges, the measured nanoporous thin films of this work are directly grown on a patterned sapphire substrate to minimize the structural damage by dry etching. This removes the uncertainty in the phonon transport analysis due to amorphous pore edges. Based on the measurement results, remarkable phonon size effects can be found for a thin film with periodic 300-nm-diameter pores of different patterns. This indicates that a significant amount of heat inside these alloys is still carried by phonons with ~300 nm or longer mean free paths. Our studies provide important guidance for ZT enhancement in alloys of nitrides and similar oxides.

Keywords

nanoporous film / thermoelectrics / phonon / mean free path / diffusive scattering

Cite this article

Download citation ▾
Dongchao XU, Quan WANG, Xuewang WU, Jie ZHU, Hongbo ZHAO, Bo XIAO, Xiaojia WANG, Xiaoliang WANG, Qing HAO. Largely reduced cross-plane thermal conductivity of nanoporous In0.1Ga0.9N thin films directly grown by metal organic chemical vapor deposition. Front. Energy, 2018, 12(1): 127-136 DOI:10.1007/s11708-018-0519-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Johnson W, Piner E L. GaN HEMT Technology. Berlin: Springer Berlin Heidelberg, 2012

[2]

Wu Y R, Singh J. Transient study of self-heating effects in AlGaN/GaN HFETs: consequence of carrier velocities, temperature, and device performance. Journal of Applied Physics, 2007, 101(11): 113712

[3]

Rosker M, Bozada C, Dietrich H, Hung A, Via D, Binari S, Vivierios E, Cohen E, Hodiak J. The DARPA wide band gap semiconductors for RF applications (WBGS-RF) program: Phase II results. In: CS MANTECH Conference. Tampa, Florida, USA, 2009

[4]

Lee H, Agonafer D D, Won Y, Houshmand F, Gorle C, Asheghi M, Goodson K. Thermal modeling of extreme heat flux microchannel coolers for GaN-on-SiC semiconductor devices. Journal of Electronic Packaging, 2016, 138(1): 010907

[5]

Calame J P, Myers R E, Binari S C, Wood F N, Garven M. Experimental investigation of microchannel coolers for the high heat flux thermal management of GaN-on-SiC semiconductor devices. International Journal of Heat and Mass Transfer, 2007, 50(23–24): 4767–4779

[6]

Yan Z, Liu G, Khan J M, Balandin A A. Graphene quilts for thermal management of high-power GaN transistors. Nature Communications, 2012, 3(3): 199–202

[7]

Tsurumi N, Ueno H, Murata T, Ishida H, Uemoto Y, Ueda T, Inoue K, Tanaka T. AlN passivation over AlGaN/GaN HFETs for surface heat spreading. IEEE Transactions on Electron Devices, 2010, 57(5): 980–985

[8]

Liu W, Balandin A A. Thermoelectric effects in wurtzite GaN and AlxGa1-xN alloys. Journal of Applied Physics, 2005, 97(12): 123705

[9]

Pantha B N, Dahal R, Li J, Lin J Y, Jiang H X, Pomrenke G. Thermoelectric properties of In0.3Ga0.7N alloys. Journal of Electronic Materials, 2009, 38(7): 1132–1135

[10]

Sztein A, Bowers J E, DenBaars S P, Nakamura S. Polarization field engineering of GaN/AlN/AlGaN superlattices for enhanced thermoelectric properties. Applied Physics Letters, 2014, 104(4): 042106

[11]

Sztein A, Haberstroh J, Bowers J E, Denbaars S P, Nakamura S. Calculated thermoelectric properties of InxGa1−xN, InxAl1−xN, and AlxGa1−xN. Journal of Applied Physics, 2013, 113(18): 183707

[12]

Hurwitz E N, Asghar M, Melton A, Kucukgok B, Su L, Orocz M, Jamil M, Lu N, Ferguson I T. Thermopower study of GaN-based materials for next-generation thermoelectric devices and applications. Journal of Electronic Materials, 2011, 40(5): 513–517

[13]

Goldsmid H J. Thermoelectric Refrigeration. New York: Plenum Press. 1964

[14]

Pantha B N, Dahal R, Li J, Lin J Y, Jiang H X, Pomrenke G. Thermoelectric properties of InxGa1−xN alloys. Applied Physics Letters, 2008, 92(4): 042112

[15]

Sztein A, Ohta H, Bowers J E, DenBaars S P, Nakamura S. High temperature thermoelectric properties of optimized InGaN. Journal of Applied Physics, 2011, 110(12): 123709

[16]

Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E, Shi L. Nanoscale thermal transport. II. 2003–2012. Applied Physics Reviews, 2014, 1(1): 011305

[17]

Marconnet A M, Asheghi M, Goodson K E. From the casimir limit to phononic crystals: 20 years of phonon transport studies using silicon-on-insulator technology. Journal of Heat Transfer, 2013, 135(6): 061601–1/10

[18]

Lim J, Wang H T, Tang J, Andrews S C, So H, Lee J, Lee D H, Russell T P, Yang P. Simultaneous thermoelectric property measurement and incoherent phonon transport in holey silicon. ACS Nano, 2016, 10(1): 124–132

[19]

Yu J K, Mitrovic S, Tham D, Varghese J, Heath J R. Reduction of thermal conductivity in phononic nanomesh structures. Nature Nanotechnology, 2010, 5(10): 718–721

[20]

Tang J, Wang H T, Lee D H, Fardy M, Huo Z, Russell T P, Yang P. Holey silicon as an efficient thermoelectric material. Nano Letters, 2010, 10(10): 4279–4283

[21]

Chen G. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford: Oxford University Press, 2005

[22]

Maldovan M. Narrow low-frequency spectrum and heat management by thermocrystals. Physical Review Letters, 2013, 110(2): 025902

[23]

Song D, Chen G. Thermal conductivity of periodic microporous silicon films. Applied Physics Letters, 2004, 84(5): 687–689

[24]

He Y, Donadio D, Lee J H, Grossman J C, Galli G. Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales. ACS Nano, 2011, 5(3): 1839–1844

[25]

Ravichandran N K, Minnich A J. Coherent and incoherent thermal transport in nanomeshes. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(20): 205432

[26]

Hopkins P E, Reinke C M, Su M F, Olsson R H III, Shaner E A, Leseman Z C, Serrano J R, Phinney L M, El-Kady I. Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Letters, 2011, 11(1): 107–112

[27]

Lee J, Lim J, Yang P. Ballistic phonon transport in holey silicon. Nano Letters, 2015, 15(5): 3273–3279

[28]

Tong T, Fu D, Levander A, Schaff W, Pantha B, Lu N, Liu B, Ferguson I, Zhang R, Lin J, Jiang H X, Wu J, Cahill D G. Suppression of thermal conductivity in InxGa1−xN alloys by nanometer-scale disorder. Applied Physics Letters, 2013, 102(12): 121906

[29]

Hsiao T K, Chang H K, Liou S C, Chu M W, Lee S C, Chang C W. Observation of room-temperature ballistic thermal conduction persisting over 8.3 mm in SiGe nanowires. Nature Nanotechnology, 2013, 8(7): 534–538

[30]

Hao Q, Xu D, Zhao H. Systematic studies of periodically nanoporous Si films for thermoelectric applications. MRS Proceedings, 2015, 1779, 27–32

[31]

Kim B, Nguyen J, Clews P J, Reinke C M, Goettler D, Leseman Z C, El-Kady I, Olsson R. Thermal conductivity manipulation in single crystal silicon via lithographycally defined phononic crystals micro electro mechanical systems (MEMS). In: 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012, 176–179

[32]

Marconnet A M, Kodama T, Asheghi M, Goodson K E. Phonon conduction in periodically porous silicon nanobridges. Nanoscale and Microscale Thermophysical Engineering, 2012, 16(4): 199–219

[33]

Nomura M, Nakagawa J, Sawano K, Maire J, Volz S. Thermal conduction in Si and SiGe phononic crystals explained by phonon mean free path spectrum. Applied Physics Letters, 2016, 109(17): 173104

[34]

Alaie S, Goettler D F, Su M, Leseman Z C, Reinke C M, El-Kady I. Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature. Nature Communications, 2015, 6: 7228

[35]

Jain A, Yu Y J, McGaughey A J. Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(19): 195301

[36]

Choi K, Arita M, Arakawa Y. Selective-area growth of thin GaN nanowires by MOCVD. Journal of Crystal Growth, 2012, 357: 58–61

[37]

Cahill D G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Review of Scientific Instruments, 2004, 75(12): 5119–5122

[38]

Krukowski S, Witek A, Adamczyk J, Jun J, Bockowski M, Grzegory I, Lucznik B, Nowak G, Wróblewski M, Presz A, Gierlotka S, Stelmach S, Palosz B, Porowski S, Zinn P. Thermal properties of indium nitride. Journal of Physics and Chemistry of Solids, 1998, 59(3): 289–295

[39]

Leitner J, Strejc A, Sedmidubský D, Růžička K. High temperature enthalpy and heat capacity of GaN. Thermochimica Acta, 2003, 401(2): 169–173

[40]

Oh D W, Ravichandran J, Liang C W, Siemons W, Jalan B, Brooks C M, Huijben M, Schlom D G, Stemmer S, Martin L W, Majumdar A, Ramesh R, Cahill D G. Thermal conductivity as a metric for the crystalline quality of SrTiO3 epitaxial layers. Applied Physics Letters, 2011, 98(22): 221904

[41]

Zhu J, Zhu Y, Wu X, Song H, Zhang Y, Wang X. Structure-thermal property correlation of aligned silicon dioxide nanorod arrays. Applied Physics Letters, 2016, 108(23): 231903

[42]

Majumdar A. Microscale heat conduction in dielectric thin films. Journal of Heat Transfer, 1993, 115(1): 7–16

[43]

Jeong C, Datta S, Lundstrom M. Thermal conductivity of bulk and thin-film silicon: a Landauer approach. Journal of Applied Physics, 2012, 111(9): 093708

[44]

Hua Y C, Cao B Y. Cross-plane heat conduction in nanoporous silicon thin films by phonon Boltzmann transport equation and Monte Carlo simulations. Applied Thermal Engineering, 2017, 111: 1401–1408

[45]

Hao Q, Xiao Y, Zhao H. Characteristic length of phonon transport within periodic nanoporous thin films and two-dimensional materials. Journal of Applied Physics, 2016, 120(6): 065101

[46]

Liu W, Balandin A A. Thermal conduction in AlxGa1−xN alloys and thin films. Journal of Applied Physics, 2005, 97(7): 073710

[47]

Dames C, Chen G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. Journal of Applied Physics, 2004, 95(2): 682–693

[48]

Dames C, Chen G. Thermal conductivity of nanostructured thermoelectric materials. In: Rowe D M ed. Thermoelectrics Handbook: Macro to Nano. Boca Raton, USA: CRC Press 2005, 42:1–16

[49]

Toberer E S, Zevalkink A, Snyder G J. Phonon engineering through crystal chemistry. Journal of Materials Chemistry, 2011, 21(40): 15843–15852

[50]

Klemens P G. Theory of thermal conductivity in solids. In: Tye R P ed. Thermal Conductivity. London: Academic Press, 1969, 1–68

[51]

Roufosse M, Klemens P G. Thermal conductivity of complex dielectric crystals. Physical Review B: Condensed Matter and Materials Physics, 1973, 7(12): 5379–5386

[52]

Julian C L. Theory of heat conduction in rare-gas crystals. Physical Review, 1965, 137(1A): A128–A137

[53]

Slack G A, Galginaitis S. Thermal conductivity and phonon scattering by magnetic impurities in CdTe. Physical Review, 1964, 133(1A): A253–A268

[54]

Leibfried G, Schloemann E. Thermal conductivity of dielectric solids by a variational technique. Nachr Akad Wiss Goettingen, Math-Phys Kl, 2A. Math-Phys-Chem Abt, 1954, 23: 1366–1370

[55]

Freedman J P, Leach J H, Preble E A, Sitar Z, Davis R F, Malen J A. Universal phonon mean free path spectra in crystalline semiconductors at high temperature. Scientific Reports, 2013, 3(1): 2963

[56]

Yang F, Dames C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(3): 035437

[57]

Lindsay L, Broido D, Reinecke T. Thermal conductivity and large isotope effect in GaN from first principles. Physical Review Letters, 2012, 109(9): 095901

[58]

Mion C, Muth J, Preble E, Hanser D. Accurate dependence of gallium nitride thermal conductivity on dislocation density. Applied Physics Letters, 2006, 89(9): 092123

[59]

Tamura S I. Isotope scattering of dispersive phonons in Ge. Physical Review B: Condensed Matter and Materials Physics, 1983, 27(2): 858–866

[60]

Ziman J M. Electrons and Phonons: the Theory of Transport Phenomena in Solids. Oxford: Oxford University Press, 2001

[61]

Klemens P G. The scattering of low-frequency lattice waves by static imperfections. Proceedings of the Physical Society. Section A, 1955, 68(12): 1113–1128

[62]

Wright A. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. Journal of Applied Physics, 1997, 82(6): 2833–2839

[63]

Pantha B, Dahal R, Li J, Lin J, Jiang H, Pomrenke G. Thermoelectric properties of InxGa1−xN alloys. Applied Physics Letters, 2008, 92(4): 042112

[64]

Regner K T, Sellan D P, Su Z, Amon C H, McGaughey A J, Malen J A. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nature Communications, 2013, 4: 1640

[65]

Koh Y K, Cahill D G. Frequency dependence of the thermal conductivity of semiconductor alloys. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(7): 075207

[66]

Kucukgok B, Wu X, Wang X, Liu Z, Ferguson I T, Lu N. The structural properties of InGaN alloys and the interdependence on the thermoelectric behavior. AIP Advances, 2016, 6(2): 025305

[67]

Mingo N, Hauser D, Kobayashi N, Plissonnier M, Shakouri A. “Nanoparticle-in-Alloy” approach to efficient thermoelectrics: silicides in SiGe. Nano Letters, 2009, 9(2): 711–715

[68]

Koh Y K, Singer S L, Kim W, Zide J M O, Lu H, Cahill D G, Majumdar A, Gossard A C. Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. Journal of Applied Physics, 2009, 105(5): 054303

[69]

Jeżowski A, Danilchenko B, Boćkowski M, Grzegory I, Krukowski S, Suski T, Paszkiewicz T. Thermal conductivity of GaN crystals in 4.2–300 K range. Solid State Communications, 2003, 128(2–3): 69–73

[70]

Jung K, Cho M, Zhou M. Strain dependence of thermal conductivity of [0001]-oriented GaN nanowires. Applied Physics Letters, 2011, 98(4): 041909

[71]

Hao Q, Zhao H, Xiao Y. Multi-length scale thermal simulations of GaN-on-SiC high electron mobility transistors. In: Zhang Y, He Y-L ed. Multiscale Thermal Transport in Energy Systems. Hauppauge. New York: Nova Science Publishers, 2016

[72]

Han Y J. Intrinsic thermal-resistive process of crystals: umklapp processes at low and high temperatures. Physical Review B: Condensed Matter and Materials Physics, 1996, 54(13): 8977– 8980

[73]

Dubey K, Misho R. Three-phonon scattering relaxation rate and phonon conductivity. Application to Mg2Ge. Physica Status Solidi. B, Basic Research, 1977, 84(1): 69–81

[74]

Joshi Y, Verma G. Analysis of phonon conductivity: application to Si. Physical Review B: Condensed Matter and Materials Physics, 1970, 1(2): 750–755

[75]

Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials, 2007, 6(2): 129–134

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (296KB)

2920

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/