Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell

Tian TIAN , Jianjun TANG , Wei GUO , Mu PAN

Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 326 -333.

PDF (395KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (3) : 326 -333. DOI: 10.1007/s11708-017-0489-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell

Author information +
History +
PDF (395KB)

Abstract

In this paper, a novel accelerated test method was proposed to analyze the durability of MEA, considering the actual operation of the fuel cell vehicle. The proposed method includes 7 working conditions: open circuit voltage (OCV), idling, rated output, overload, idling-rated cycle, idling-overload cycle, and OCV-idling cycle. The experimental results indicate that the proposed method can effectively destroy the MEA in a short time (165 h). Moreover, the degradation mechanism of MEA was analyzed by measuring the polarization curve, CV, SEM and TEM. This paper may provide a new research direction for improving the durability of fuel cell.

Keywords

polymer electrolyte membrane fuel cell / accelerated life-time test / load cycling test / durability

Cite this article

Download citation ▾
Tian TIAN, Jianjun TANG, Wei GUO, Mu PAN. Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell. Front. Energy, 2017, 11(3): 326-333 DOI:10.1007/s11708-017-0489-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Steele B CHeinzel  A. Materials for fuel-cell technologies. Nature2001414(6861): 345–352

[2]

Winter MBrodd  R J. What are batteries, fuel cells, and supercapacitors? ChemInform2004104(10): 4245

[3]

Borup RMeyers  JPivovar B Kim Y S Mukundan R Garland N Myers D Wilson M Garzon F Wood DZelenay  PMore K Stroh K Zawodzinski T Boncella J McGrath J E Inaba M Miyatake K Hori MOta  KOgumi Z Miyata S Nishikata A Siroma Z Uchimoto Y Yasuda K Kimijima K Iwashita N . Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews2007107(10): 3904–3951

[4]

Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature2012486(7401): 43–51

[5]

Wu JYuan  X ZMartin  J JWang  HZhang J Shen JWu  SMerida W . A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. Journal of Power Sources2008184(1): 104–119

[6]

Bar-On IKirchain  RRoth R . Technical cost analysis for PEM fuel cells. Journal of Power Sources2002109(1): 71–75

[7]

Arlt TManke  IWippermann K Riesemeier H Mergel J Banhart J . Investigation of the local catalyst distribution in an aged direct methanol fuel cell MEA by means of differential synchrotron X-ray absorption edge imaging with high energy resolution. Journal of Power Sources2013221(1): 210–216

[8]

Liu WRuth  KRusch G . Membrane durability in PEM fuel cells. Journal of New Materials for Electrochemical Systems20014(4): 227–232

[9]

Galbiati SBaricci  ACasalegno A Marchesi R . Degradation in phosphoric acid doped polymer fuel cells: a 6000 h parametric investigation. International Journal of Hydrogen Energy,  2013,  38(15): 6469–6480

[10]

Bao JKrishnan  G NJayaweera  PPerez-Mariano J Sanjurjo A . Effect of various coal contaminants on the performance of solid oxide fuel cells: Part I. Accelerated testing. Journal of Power Sources2009193(2): 607–616

[11]

Zhang SYuan  XWang H Merida W Zhu HShen  JWu S Zhang J . A review of accelerated stress tests of MEA durability in PEM fuel cells. International Journal of Hydrogen Energy,  2009,  34(1): 388–404

[12]

Panha KFowler  MYuan X Z Wang H. Accelerated durability testing via reactants relative humidity cycling on PEM fuel cells. Applied Energy,  2012,  93(5): 90–97

[13]

Aindow T TO’Neill  J. Use of mechanical tests to predict durability of polymer fuel cell membranes under humidity cycling. Journal of Power Sources,2011,  196(8): 3851–3854

[14]

Kundu SFowler  MSimon L C Abouatallah R . Reversible and irreversible degradation in fuel cells during open circuit voltage durability testing. Journal of Power Sources,  2008,  182(1): 254–258

[15]

Rong FHuang  CLiu Z S Song DWang  Q. Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling: part II. simulation and understanding. Journal of Power Sources,  2008,  175(2): 712–723

[16]

Avakov V BAliev  A DBeketaeva  L ABogdanovskaya  V ABurkovskii  E VDatskevich  A AIvanitskii  B AKazanskii  L PKapustin  A VKorchagin  O VKuzov  A VLandgraf  I KLozovaya  O VModestov  A DStankevich  M MTarasevich  M RChalykh  A E. Study of degradation of membrane-electrode assemblies of hydrogen-oxygen (air) fuel cell under the conditions of life tests and voltage cycling. Russian Journal of Electrochemistry, 2014,  50(8): 773–788

[17]

Solasi RZou  YHuang X Reifsnider K Condit D . On mechanical behavior and in-plane modeling of constrained PEM fuel cell membranes subjected to hydration and temperature cycles. Journal of Power Sources2007167(2): 366–377

[18]

Oszcipok MRiemann  DKronenwett U Kreideweis M Zedda A . Statistic analysis of operational influences on the cold start behaviour of PEM fuel cells. Journal of Power Sources2005145(2): 407–415

[19]

Nishikawa HSasou  HKurihara R Nakamura S Kano ATanaka  KAoki T Ogami Y . High fuel utilization operation of pure hydrogen fuel cells. International Journal of Hydrogen Energy200833(21): 6262–6269

[20]

Ettingshausen FKleemann  JMarcu A Toth GFuess  HRoth C . Dissolution and migration of platinum in PEMFCs investigated for start/stop cycling and high potential degradation. Fuel Cells (Weinheim)201111(2): 238–245

[21]

Manasilp AGulari  E. Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Applied Catalysis B: Environmental200237(1): 17–25

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (395KB)

7138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/