Cumulant-based correlated probabilistic load flow considering photovoltaic generation and electric vehicle charging demand

Nitesh Ganesh BHAT , B. Rajanarayan PRUSTY , Debashisha JENA

Front. Energy ›› 2017, Vol. 11 ›› Issue (2) : 184 -196.

PDF (428KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (2) : 184 -196. DOI: 10.1007/s11708-017-0465-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Cumulant-based correlated probabilistic load flow considering photovoltaic generation and electric vehicle charging demand

Author information +
History +
PDF (428KB)

Abstract

This paper applies a cumulant-based analytical method for probabilistic load flow (PLF) assessment in transmission and distribution systems. The uncertainties pertaining to photovoltaic generations and aggregate bus load powers are probabilistically modeled in the case of transmission systems. In the case of distribution systems, the uncertainties pertaining to plug-in hybrid electric vehicle and battery electric vehicle charging demands in residential community as well as charging stations are probabilistically modeled. The probability distributions of the result variables (bus voltages and branch power flows) pertaining to these inputs are accurately established. The multiple input correlation cases are incorporated. Simultaneously, the performance of the proposed method is demonstrated on a modified Ward-Hale 6-bus system and an IEEE 14-bus transmission system as well as on a modified IEEE 69-bus radial and an IEEE 33-bus mesh distribution system. The results of the proposed method are compared with that of Monte-Carlo simulation.

Keywords

battery electric vehicle / extended cumulant method / photovoltaic generation / plug-in hybrid electric vehicle / probabilistic load flow

Cite this article

Download citation ▾
Nitesh Ganesh BHAT, B. Rajanarayan PRUSTY, Debashisha JENA. Cumulant-based correlated probabilistic load flow considering photovoltaic generation and electric vehicle charging demand. Front. Energy, 2017, 11(2): 184-196 DOI:10.1007/s11708-017-0465-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Borkowska B. Probabilistic load flow. IEEE Transactions on Power Apparatus and Systems1974, PAS-93(3): 752–759

[2]

Prusty B RJena  D. A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach. Renewable & Sustainable Energy Reviews201769: 1286–1302

[3]

Zhang PLee  S T. Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion. IEEE Transactions on Power Systems200419(1): 676–682

[4]

Usaola J. Probabilistic load flow in systems with wind generation. IET Generation, Transmission & Distribution20093(12): 1031–1041

[5]

Fan MVittal  VHeydt G T Ayyanar R . Probabilistic power flow studies for transmission systems with photovoltaic generation using cumulants. IEEE Transactions on Power Systems201227(4): 2251–2261

[6]

Villanueva DFeijóo  A EPazos  J L. An analytical method to solve the probabilistic load flow considering load demand correlation using the DC load flow. Electric Power Systems Research2014110: 1–8

[7]

Prusty B RJena  D. Modeling of correlated photovoltaic generations and load demands in probabilistic load flow. In: 12th IEEE International Conference Electronics, Energy, Environment, Communication, Computer, Control (INDICON 2015), New Delhi2015, 1–6

[8]

Prusty B RJena  D. Combined cumulant and Gaussian mixture approximation for correlated probabilistic load flow studies: a new approach. CSEE Journal of Power and Energy Systems20162(2): 71–78

[9]

Conti SRaiti  S. Probabilistic load flow using Monte Carlo techniques for distribution networks with photovoltaic generators. Solar Energy200781(12): 1473–1481

[10]

Ruiz-Rodriguez F J Hernández J C Jurado F . Probabilistic load flow for photovoltaic distributed generation using the Cornish–Fisher expansion. Electric Power Systems Research201289: 129–138

[11]

Carpinelli GCaramia  PVarilone P . Multi-linear Monte Carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems. Renewable Energy201576: 283–295

[12]

Vlachogiannis J G . Probabilistic constrained load flow considering integration of wind power generation and electric vehicles. IEEE Transactions on Power Systems200924(4): 1808–1817

[13]

Pashajavid EGolkar  M A. Charging of plug-in electric vehicles: stochastic modelling of load demand within domestic grids. In: Proceedings of 20th Iranian Conference on Electrical Engineering (ICEE2012), Tehran2012, 535–539

[14]

Kong SCho  H CLee  J UJoo  S K. Probabilistic modeling of electric vehicle charging load for probabilistic load flow. In: 2012 IEEE Vehicle Power and Propulsion Conference (VPPC 2012), Seoul, Republic of Korea2012, 1010–1013

[15]

Wu CWen  FLou Y Xin F. Probabilistic load flow analysis of photovoltaic generation system with plug-in electric vehicles. International Journal of Electrical Power & Energy Systems201564: 1221–1228

[16]

Papadopoulos PSkarvelis-Kazakos  SGrau I Awad BCipcigan  L MJenkins  N. Impact of residential charging of electric vehicles on distribution networks, a probabilistic approach. In: Proceedings of 2010 45th International Universities’ Power Engineering Conference (UPEC), Cardiff, Wales2010, 1–5

[17]

Tehrani N HWang  P. Probabilistic estimation of plug-in electric vehicles charging load profile. Electric Power Systems Research2015124: 133–143

[18]

Li GZhang  X P. Modeling of plug-in hybrid electric vehicle charging demand in probabilistic power flow calculations. IEEE Transactions on Smart Grid20123(1): 492–499

[19]

Dimitrovski AAckovski  R. Probabilistic load flow in radial distribution networks. In: Proceedings of the 1996 14th IEEE Transmission and Distribution Conference, Los Angeles, CA1996, 102–107

[20]

Golkar M A. A new probabilistic load-flow method for radial distribution networks. European Transactions on Electrical Power Systems200313(3): 167–172

[21]

Hoese AGarcés  F. Stochastic correlated simulation: an extension of the cumulant method to include time-dependent energy sources. International Journal of Electrical Power & Energy Systems199921(1): 13–22

[22]

Cai DShi  DChen J . Probabilistic load flow computation with polynomial normal transformation and Latin hypercube sampling. IET Generation, Transmission & Distribution20137(5): 474–482 doi:10.1049/iet-gtd.2012.0405

[23]

Pai M AChatterjee  D. Computer Techniques in Power System Analysis. 3rd ed. Noida: McGraw Hill Education (India) Private Limited, 2014

[24]

Electrical Engineering, University of Washington. Power systems test case archive, 2016-09-26.

[25]

Kumar DAgrawal  S. Load flow solution for meshed distribution networks. Dissertation for the Bachelor’s Degree. Rourkela: National Institute of Technology Rourkela, 2013

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (428KB)

3492

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/