Nodal, zonal, or uniform electricity pricing: how to deal with network congestion

Martin WEIBELZAHL

Front. Energy ›› 2017, Vol. 11 ›› Issue (2) : 210 -232.

PDF (464KB)
Front. Energy ›› 2017, Vol. 11 ›› Issue (2) : 210 -232. DOI: 10.1007/s11708-017-0460-z
REVIEW ARTICLE
REVIEW ARTICLE

Nodal, zonal, or uniform electricity pricing: how to deal with network congestion

Author information +
History +
PDF (464KB)

Abstract

In this paper, the main contributions to congestion management and electricity pricing, i.e., nodal, zonal, and uniform electricity pricing, are surveyed. The key electricity market concepts are structured and a formal model framework is proposed for electricity transportation, production, and consumption in the context of limited transmission networks and competitive, welfare maximizing electricity markets. In addition, the main results of existing short-run and long-run congestion management studies are explicitly summarized. In particular, the important interconnection between short-run network management approaches and optimal long-run investments in both generation facilities and network lines are highlighted.

Keywords

nodal pricing / zonal pricing / uniform pricing / competitive electricity markets / welfare maximization / redispatch / optimization models

Cite this article

Download citation ▾
Martin WEIBELZAHL. Nodal, zonal, or uniform electricity pricing: how to deal with network congestion. Front. Energy, 2017, 11(2): 210-232 DOI:10.1007/s11708-017-0460-z

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Liberalized electricity markets are typically characterized by a complex interaction of production, consumption, and network transmission. In contrast to the transportation of most physical goods, electricity cannot be sent along a single, contracted path, but is divided among all the available transmission lines of a network. Given the existence of such complex transmission constraints including limited line capacities, in practice, demand and production schedules will typically be restricted by at least some of these power flow constraints. Such situations are referred to as network congestion. Depending on the market environment, congestion may yield price divergence of different submarkets with a complex spatial differentiation of the generation structure. Obviously, transmission system operators have to ensure that transmission constraints are never violated, which is the task of congestion management []. Efficient congestion management mechanisms and adequate electricity market designs are of high importance for efficient short-term network and market operations as well as for long-term transmission and generation investments. In particular, long-run investments will highly depend on the implemented congestion management methods and on corresponding market outcomes, including future profits of firms. In the past decades, various models have been developed in the electricity market literature to analyze and compare different ways to deal with transmission congestion. The most efficient, welfare maximizing congestion management is the implementation of node specific prices that directly account for limited transmission capacities and possible congestion between nodes—called nodal pricing []. Even though, nodal pricing avoids an overload of transmission lines and induces optimal investments in the long-run, an obvious drawback of nodal pricing in real world networks is the high number of calculated prices. As pointed out by Stoft [] and Hogan [], already a single congested transmission line may yield nodal prices that differ at every node of the network. Therefore, network nodes are sometimes partitioned into price zones that share a common price. This approach is referred to as zonal pricing (see Bjørndal and Jørnsten []). In its extreme form, all nodes belong to a single price zone and only a single system price is calculated. Obviously, the outcomes under this uniform pricing and under zonal pricing may violate transmission restrictions of the underlying network. Therefore, zonal and uniform pricing may require an expost adjustment of market outcomes that is often referred to as redispatch.

Does the consideration of the network matter?

Now assume that demand and generation are located in two different areas (nodes) that are linked by a lossless transmission line with a capacity of 2 MWh. Generation is located at the northern node and demand is located at the southern node. Obviously, the described optimal solution with a generation of 5 MWh violates the transmission capacity. The reason for this physical infeasibility is the missing “congestion signal” of the uniform market price, i.e., the uniform price does not incentivize an optimal use of the transmission line that interconnects the two nodes. Therefore, in an optimal solution that directly accounts for the limited transmission capacity between the two nodes, more than one (uniform) market price is needed to clear the northern and the southern market. The following section will also be referred to, which discusses such an optimal nodal pricing as well as other congestion management approaches that aim at keeping a uniform price or at least uniform prices within different price zones—possibly at the cost of a welfare loss as compared to nodal pricing. Turning back to the two-node example, for the case of a limited transmission capacity, in the north the price will fall to 2 €/MWh with a corresponding optimal production of 2 MWh (point B). Analogously, in the south the price will rise to 8 €/MWh reducing southern consumption to 2 MWh (point C). The striped area in Fig. 1 describes the so-called congestion rent, transmission surplus, or merchandising surplus that a transmission system operator earns due to the price difference between the north and the south (consumers pay more than producers receive). This merchandising surplus may be used by the transmission system operator for network maintenance or extension measures. When turning to the welfare effects of the optimal network-constrained solution, as expected welfare decreases as compared to the unrestricted (single-node) case. The grey area in Fig. 1 indicates this congestion cost, which is the welfare loss of an optimal network-restricted solution as compared to the unrestricted case with a uniform market price (see for instance Hornnes et al. [], Crampes and Laffont [], or Rious et al. [] for more details on the discussed concepts). Figure 2 further illustrates congestion rents of the transmission system operator (solid line) and congestion cost (dashed line) for different line capacities. While congestion costs fall until the line capacity limit reaches the equilibrium quantity of the unrestricted case (point E), rents first increase and then decrease. For line capacities of more than 5 MWh (the unrestricted case), both congestion rents and congestion costs completely disappear. This can be seen, as the line capacity does not constrain market outcomes anymore. It further shows that non-network models can be seen as a special case of a network-constrained model, where transmission capacities are non-restricting and losses are not considered, and that binding network constraints may add substantial complexity as compared to non-network models.

Short-run network management analysis: nodal, zonal, and uniform pricing

Short-run nodal pricing

Bohn et al. [] are among the first to elaborate on the effects of spatial differentiation in an electricity transmission network. The authors analyze a welfare maximization problem that is subject to generation limits, transmission capacities, and energy balance restrictions accounting for physical transmission laws. Thus, all relevant transmission restrictions are taken into account when the energy market clears, which implies that a first best welfare is realized (see also Problem (3a) to (3b) in Section 6.1). Therefore, in their model, spot prices reflect the optimal locational value of consumption, generation, and transmission. As a main result, the price difference between two nodes of the network indicates the correct optimal short-run price of transmission, which depends on marginal losses and congestion in the network. In direct consequence, prices provide an optimal incentive for efficient generation and consumption schedules and incentivize an optimal use of network facilities, i.e., limited transmission lines. Based on these findings, different mechanisms to allocate transmission capacity rights, to design transmission ownership, and to compensate the respective owners have been analyzed. In the following, two main contributions by Hogan [] and Chao and Peck [] will be described. Hogan [] studies optimal pricing in the context of contract networks and transmission capacity rights that ensure short-run efficiency. In contrast to a pure contract path model, where capacity rights correspond to individual transmission lines that were contracted, Hogan [] defines capacity rights that are assigned to node pairs. The owner of such a contract network right can either send power from one node to the other network node or receive the nodal price difference between the two nodes. Based on these results, Chao and Peck [] introduce a property rights approach that assigns network rights to contract paths together with some specified trading rule. The trading rule describes the amount of transmission rights of the relevant lines that have to be procured in order to being able to send power to a chosen network node. Again, short-run efficiency is guaranteed by this mechanism.

Short-run zonal and uniform pricing

Problems of two-node models

Multiple-node networks

As discussed above, zonal pricing is often seen as a simplified form of nodal pricing by reducing the number of different prices. However, zonal pricing models are not necessarily a relaxation of a nodal pricing model. Instead, Bjørndal and Jørnsten [] are the first to present an ideal zonal pricing model that adds constraints to the nodal pricing model. These constraints force equal prices in the different zones (see also Problem (9a) to (9c) in Section 6.3.1). In their zonal pricing model, transmission flows are always physically feasible, which implies that no redispatch is necessary. The authors analyze different zonal configurations for given generation and transmission facilities with elastic demand. In a pseudo direct current flow model, they show that a finer node set partition, i.e., the introduction of new price zones, can only be welfare enhancing or welfare neutral. In general, zonal pricing will result in a welfare loss as compared to nodal pricing. Different zone boundaries influence total welfare and the surplus of individual agents, creating conflicts of interest between these groups. Bjørndal and Jørnsten [] also show that nodal prices may, in general, fail to indicate welfare maximizing zone allocations when the number of price zones is fixed. Instead, a nonlinear, mixed-integer program is proposed to determine an optimal zone configuration for a given number of price zones. This extends and formalizes previous studies that discussed criteria for adequate zone boundaries based on either congested lines or nodal prices. In this context, Walton and Tabors [] elaborate on within-zone and between-zone nodal price variances to determine both the number of price zones and their respective boundaries. Bjørndal and Jørnsten [] also contribute to the work of Hogan [], who has already highlighted that only in radial networks the question of an optimal definition of zone boundaries may easily be answered. In contrast, in general networks with loop flows, congestion of only a single transmission line may result in a very complex system. For such general networks, the nonlinear, mixed-integer program in Bjørndal and Jørnsten [] may provide a tool to identify optimal zone boundaries in the short-run.

Ehrenmann and Smeers [] analyze the effects of a second best zonal pricing approach with fixed zones, which only considers inter-zonal flow restrictions (see also Section 6.3.2). Based on Bjørndal and Jørnsten [], the authors discuss the inefficiencies of different zonal configurations in an ideal and second best zonal pricing model including the uniform pricing case. Similar to Bjørndal and Jørnsten [], Ehrenmann and Smeers [] do not explicitly present an ex post redispatch model to deal with overloads. Instead, they focus on general infeasibility issues of the uniform pricing and zonal pricing model. In addition, the problem of an adequate (aggregate) network representation of the second best zonal pricing model is elaborated on. In particular, safety standards of inter-zonal transmission lines are discussed. As in an ideal zonal pricing model the original network characteristics are always used, under second best zonal pricing the construction of adequate physical characteristics of inter-zonal lines comes on top of the already challenging decision on the optimal number of price zones and their boundaries. In this context, using a pseudo direct current network, Boucher and Smeers [] show that inter-zone transfer capacities can only be efficiently defined for the case of radial networks. In contrast, in the case of a general network with loop flows, the transfer capacity highly depends on the demand-generation pattern and not only on the physical characteristics of particular transmission lines. Observe that such ambiguities have been previously emphasized in the nodal pricing literature in the context of different load patterns (see Hogan []). This underlines that, in general, it may be very challenging to identify an optimal, welfare maximizing zonal design.

Long-run generation and transmission investments: nodal, zonal, and uniform pricing models

Reference long-run generation and transmission investment models: nodal pricing and integrated planning as overall system optima

Network investments

Alguacil et al. [] further focus on network extensions in the case of discrete line investment decisions. The authors show that when losses are considered in a model with inelastic demand, the resulting network extensions may differ from the solution of a lossless model. Observe that in such models typically only a subset of lines can be extended. Otherwise, the resulting models may be too computationally challenging. To identify candidate lines that should be included in the model, a typical selection procedure will first identify the existing transmission lines, whose capacities bind. In a second step, these binding lines will be ranked according to their binding time, i.e., the aggregated time where the transmission line’s capacity is binding. Based on this ranking, a selection of candidate lines is made (see David and Wen [] for a more detailed discussion including several ranking criteria). Dating back to the early work of Garver [], linear programming may also be used to identify relevant transmission capacity shortages. However, most long-run studies mainly focus on some kind of radial network extensions, which mainly implies that existing transmission corridors can be strengthened by new candidate lines. As demonstrated by Baldick and Kahn [], the focus on such extensions may face severe problems. In particular, such radial network extensions will, in general, fail to identify optimal network configurations that may involve completely new transmission corridors. However, such simplifications may be necessary to ensure computational tractability of long-run investment models.

Generation and network investments

Long-run generation and transmission investment models: zonal, uniform, and hierarchical nodal pricing models

Investment in generation capacity without relevant transmission constraints

Steiner [] is among the first to study generation investments in such a single-node framework. He analyzes a simple two-period model with a high and a low demand, respectively. The two demand functions are decreasing, independent, and unequal. A single generator with constant variable and investment cost is considered. He shows that when the investment decision is made in order to maximize welfare, capacity investment costs are charged in the high demand period only. In the low demand period, the resulting price is equal to the variable cost of production. Crew and Kleindorfer [] extend this simple model by a consideration of two generators that are ordered such that their production cost strictly increase (investment cost strictly decrease) and satisfy a criterion under which both plants are used. Under these assumptions, in the low demand period, not only running costs are charged. Crew and Kleindorfer [] further extend these results to the case of multiple generators with several time periods. The authors characterize the technological frontier and present bounds on optimal prices. In the following years, one emerging strand of peak-load pricing literature incorporates market power or uncertainties, which are both not the focus of this paper (Amongst others, see Crew and Kleindorfer [], Kleindorfer and Fernando [], or for an overview Crew et al. []). The other stand of generation investment literature introduces limited network facilities and discusses investments in the context of networks. Such contributions are discussed in more detail below.

Transmission investments: zonal, uniform, and hierarchical nodal pricing models

Transmission and generation investments: zonal, uniform, and hierarchical nodal pricing models

Key model elements of electricity production, transportation, and consumption

General overview

Electricity production

Electricity consumption/demand

Electricity transportation

Welfare formulation

Congestion management: basic models

Nodal pricing model

Uniform pricing model

Zonal pricing models

Ideal zonal pricing model

Second best zonal pricing

(Further) Multilevel electricity market models

Future research challenges

Further hierarchical long-run models

Hybrid congestion management models

Optimal price zone configurations and efficient transfer capacities

Conclusions

References

[1]

Felder FStoft  S. Power system economics: designing markets for electricity. IEEE Power & Energy Magazine, 2003, 99(1): 58–63

[2]

Kumar ASrivastava  S CSingh  S N. Congestion management in competitive power market: a bibliographical survey. Electric Power Systems Research, 2005, 76(1): 153–164

[3]

Neuhoff KBarquin  JBialek J W Boyd RDent  C JEchavarren  FGrau T Von Hirschhausen C Hobbs B F Kunz F. Renewable electric energy integration: quantifying the value of design of markets for international transmission capacity. Energy Economics, 2013, 40(2): 760–772

[4]

Bohn R ECaramanis  M CSchweppe  F C. Optimal pricing in electrical networks over space and time. Rand Journal of Economics, 1984, 15(3): 360–376

[5]

Stoft S. Transmission pricing zones: simple or complex? Electricity Journal, 1997, 10(1): 24–31

[6]

Hogan W. Nodes and zones in electricity markets: seeking simplified congestion pricing. In: Designing Competitive Electricity Markets. New York: Springer1998

[7]

De Vries L J Hakvoort R A . An economic assessment of congestion management methods for electricity transmission networks. Journal of Network Industries, 2002, 3(4): 425–467

[8]

Inderst RWambach  A. Netz-engpassmanagement im deutschen stromübertragungsnetz. Journal of Energy Management200731(4): 333

[9]

Bjørndal MJørnsten  K. Zonal pricing in a deregulated electricity market. Energy Journal, 2001, 22(1): 51–74

[10]

Smeers Y.Computable equilibrium models and the restructuring of the European electricity and gas markets. Energy Journal  1998, 18(4): 1–32

[11]

Green R. Nodal pricing of electricity: How much does it cost to get it wrong? Journal of Regulatory Economics, 2007, 31(2): 125–149

[12]

Grimm VMartin  ASchmidt M Weibelzahl M Zöttl G . Transmission and generation investment in electricity markets: the effects of market splitting and network fee regimes. European Journal of Operational Research, 2016, 254(2): 493–509

[13]

Cho I K. Competitive equilibrium in a radial network. Rand Journal of Economics, 2003, 34(3): 438–60

[14]

Hornnes K SGrande  O SBakken  B H. Main grid development planning in a deregulated market regime. Power Engineering Society Winter Meeting, 2000, 2(2): 845–849

[15]

Crampes CLaffont  J J. Transport pricing in the electricity industry. Oxford Review of Economic Policy, 2001, 17(3): 313–328

[16]

Rious VGlachant  J MPerez  YDessante P . The diversity of design of TSOs. Energy Policy, 2008, 36(9): 3323–3332

[17]

Hogan W W. Contract networks for electric power transmission. Journal of Regulatory Economics, 1992, 4(3): 211–242

[18]

Chao H PPeck  S. A market mechanism for electric power transmission. Journal of Regulatory Economics, 1996, 10(1): 25–59

[19]

Oren S SSpiller  P TVaraiya  PWu F . Nodal prices and transmission rights: a critical appraisal. Electricity Journal, 1995, 8(3): 24–35

[20]

Wu FVaraiya  PSpiller P Oren S. Folk theorems on transmission access: proofs and counterexamples. Journal of Regulatory Economics, 1996, 10(1): 5–23

[21]

Chen LSuzuki  HWachi T Shimura Y . Components of nodal prices for electric power systems. IEEE Transactions on Power Systems, 2002, 17(1): 41–49

[22]

Ding FFuller  J D. Nodal, uniform, or zonal pricing: distribution of economic surplus. IEEE Transactions on Power Systems, 2005, 20(2): 875–882

[23]

Ehrenmann ASmeers  Y. Inefficiencies in European congestion management proposals. SSRN Electronic Journal200413(2): 135–152

[24]

Ramachandran PSenthil  R. Locational marginal pricing approach to minimize congestion in restructured power market. Journal of Electrical and Electronics Engineering Research2010

[25]

Bjørndal MJørnsten  KPignon V . Congestion management in the Nordic power market: counter purchasers and zonal pricing. Competition & Regulation in Network Industries, 2003, 4(3): 271–293

[26]

Bjørndal MJørnsten  K. Benefits from coordinating congestion management—the Nordic power market. Energy Policy, 2007, 35(3): 1978–1991

[27]

Oggioni GSmeers  Y. Market failures of market coupling and counter-trading in Europe: an illustrative model based discussion. Energy Economics, 2013, 35(1): 74–87

[28]

Grimm VMartin  ASölch C Weibelzahl M Zöttl G . Cost-based vs. market-based redispatch: a comparison. (in press).

[29]

Walton STabors  R D. Zonal transmission pricing: methodology and preliminary results from the WSCC. Electricity Journal, 1996, 9(9): 34–41

[30]

Blijswijk M J V De Vries L J . Evaluating congestion management in the Dutch electricity transmission grid. Energy Policy, 2012, 51(6): 916–926

[31]

Trepper KBucksteeg  MWeber C . Market splitting in Germany–new evidence from a three-stage numerical model of Europe. Energy Policy, 2015, 87: 199–215

[32]

Boucher JSmeers  Y. Towards a common European electricity market. Journal of Network Industries, 2002

[33]

Rious VUsaola  JSaguan M Glachant J M Dessante P . Assessing available transfer capacity on a realistic European network: impact of assumptions on wind power generation. In:1st International Conference on Infrastructure Systems and Services: Building Networks for a Brighter Future (INFRA), Rotterdam, Netherlands2008

[34]

Bjørndal EBjørndal  MCai H . Nodal pricing in a coupled electricity market. In: 11th International Conference on European Energy Market (EEM), Cracow, Poland2014

[35]

Benders J F. Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 1962, 4(1): 238–252

[36]

Oliveira E J D Silva I C D Pereira J L R Carneiro S . Transmission system expansion planning using a sigmoid function to handle integer investment variables. IEEE Transactions on Power Systems, 2006, 20(3): 1616–1621

[37]

Binato SPereira  M V FGranville  S. A new Benders decomposition approach to solve power transmission network design problems. IEEE Transactions on Power Systems, 2001, 16(2): 235–240

[38]

Gallego R AMonticelli  ARomero R . Transmission system expansion planning by an extended genetic algorithm. IEEE Proceedings–Generation, Transmission and Distribution1998145(3): 329–335

[39]

Oliveira GCosta  ABinato S . Large scale transmission network planning using optimization and heuristic techniques. IEEE Transactions on Power Systems, 1995, 10(4): 1828–1834

[40]

Hirst EKirby  B. Key transmission planning issues. Electricity Journal, 2001, 14(8): 59–70

[41]

Alguacil NMotto  A LConejo  A J. Transmission expansion planning: a mixed-integer LP approach. IEEE Transactions on Power Systems, 2003, 18(3): 1070–1077

[42]

David A KWen  F. Transmission planning and investment under competitive electricity market environment. Power Engineering Society Summer Meeting, 2001, 3(3): 1725–1730

[43]

Garver L L. Transmission network estimation using linear programming. IEEE Transactions on Power Apparatus & Systems, 1970, PAS-89(7): 1688–1697

[44]

Baldick RKahn  E. Transmission planning issues in a competitive economic environment. IEEE Transactions on Power Systems Pwrs, 1993, 8(4): 1497–1503

[45]

Arellano M SSerra  P. Spatial peak-load pricing. Energy Economics, 2004, 29(2): 228–239

[46]

Salerian JGregan  TStevens A . Pricing in electricity markets. Journal of Policy Modeling, 2000, 22(7): 859–893

[47]

Cedeño E B Arora S . Integrated transmission and generation planning model in a deregulated environment. Frontiers in Energy20137(2): 182–190

[48]

Jenabi MGhomi  S M T FSmeers  Y. Bi-level game approaches for coordination of generation and transmission expansion planning within a market environment. IEEE Transactions on Power Systems, 2013, 28(3): 2639–2650

[49]

Steiner P O. Peak loads and efficient pricing. Quarterly Journal of Economics195771(4): 585–610 

[50]

Crew M AKleindorfer  P R. Marshall and Turvey on peak load or joint product pricing. Journal of Political Economy197179(6): 1369–1377

[51]

Crew M AKleindorfer  P R. On off-peak pricing: an alternative technological solution. Kyklos197528(1): 80–93

[52]

Crew M AKleindorfer  P R. Peak load pricing with a diverse technology. Bell Journal of Economics19767(1): 207–231

[53]

Kleindorfer P R Fernando C S . Peak-load pricing and reliability under uncertainty. Journal of Regulatory Economics19935(1): 5–23

[54]

Crew M AFernando  C SKleindorfer  P R. The theory of peak-load pricing: a survey. Journal of Regulatory Economics19958(3): 215–248

[55]

Fan HCheng  HYao L . A bi-level programming model for multistage transmission network expansion planning in competitive electricity market. Power and Energy Engineering Conference2009, 21(5): 1–6

[56]

Garcés L P Conejo A J García-Bertrand R Romero R . A bilevel approach to transmission expansion planning within a market environment. IEEE Transactions on Power Systems200924(3): 1513–1522

[57]

Bjørndal MJørnsten  K. Investment Paradoxes in Electricity Networks.New York: Springer, 2008

[58]

Baringo LConejo  A J. Transmission and wind power investment. IEEE Transactions on Power Systems201227(2): 885–893

[59]

Grimm VMartin  AWeibelzahl M Zöttl G . On the long-run effects of market splitting: why more price zones might decrease welfare. Energy Policy2016, 94: 453–467

[60]

Chao H PPeck  S. Reliability management in competitive electricity markets. Journal of Regulatory Economics199814(2): 189–200

[61]

Leuthold F UWeigt  Hvon Hirschhausen C. A large-scale spatial optimization model of the European electricity market. Networks and Spatial Economics201212(1): 75–107

[62]

Ackermann T. Distributed resources and re-regulated electricity markets. Electric Power Systems Research200777(9): 1148–1159

[63]

Bjørndal MJørnsten  K. The deregulated electricity market viewed as a bilevel programming problem. Journal of Global Optimization200533(3): 465–475

[64]

Frank SSteponavice  IRebennack S . Optimal power flow: a bibliographic survey I. Energy Systems20123(3): 221–258

[65]

Schweppe F CCaramanis  M CTabors  R DBohn  R E. Spot Pricing of Electricity.New York: Springer, 1987, 144(5): 399–405

[66]

Wu FZheng  FWen F . Transmission investment and expansion planning in a restructured electricity market. Energy200631(6–7): 954–966

[67]

Tong XLiu  CLuo X Zhou R. A new approach of available transfer capability incorporating wind generation. Journal of Systems Science and Complexity201023(5): 989–998

[68]

Luna LMartínez  JPacual V Valino V . Impact of wind power generation on the ATC value. In: 17th Power Systems Computation Conference, Stockholm, Sweden2011

[69]

Luo GChen  JCai D Shi DDuan  X. Probabilistic assessment of available transfer capability considering spatial correlation in wind power integrated system. IET Generation, Transmission and Distribution20137(12): 1527–1535

[70]

Bucksteeg MTrepper  KWeber C . Impacts of RES-generation and demand pattern on net transfer capacity: implications for effectiveness of market splitting in Germany. Ssrn Electronic Journal, 2014, 9(12): 1510–1518

[71]

Dempe S. Foundations of Bilevel Programming.New York: Springer, 2002

[72]

Koch T. Rapid mathematical programming. Dissertation for the Doctoral Degree. Berlin: Technische Universität2005

[73]

Achterberg T. SCIP. Solving Constraint Integer Programs. Mathematical Programming Computation, 20091(1): 1–41

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (464KB)

3185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/