Simulation and experimental improvement on a small-scale Stirling thermo-acoustic engine

Mao CHEN , Yonglin JU

Front. Energy ›› 2016, Vol. 10 ›› Issue (1) : 37 -45.

PDF (1191KB)
Front. Energy ›› 2016, Vol. 10 ›› Issue (1) : 37 -45. DOI: 10.1007/s11708-015-0390-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Simulation and experimental improvement on a small-scale Stirling thermo-acoustic engine

Author information +
History +
PDF (1191KB)

Abstract

Compared with the traditional engines, the thermo-acoustic engines are relatively new and can act as the linear compressors for refrigerators. Many institutes have shown great interest in this kind of machine for its absence of moving mechanical part. In this paper, the influence of the dimensions of the main parts of the small-scale Stirling thermo-acoustic engine was numerically simulated using a computer code called DeltaEC. The resonator and the resonator cavity were found to be the most convenient and effective in improving the performance of the engine. Based on the numerical simulation, a small-scale Stirling thermo-acoustic engine were constructed and experimentally investigated. Currently, with a resonator length of only 1 m, the working frequency of the engine was decreased to 90 Hz and the onset temperature difference was decreased to 198.2 K.

Keywords

thermo-acoustic Stirling engine / small-scale / simulation / experiment

Cite this article

Download citation ▾
Mao CHEN, Yonglin JU. Simulation and experimental improvement on a small-scale Stirling thermo-acoustic engine. Front. Energy, 2016, 10(1): 37-45 DOI:10.1007/s11708-015-0390-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Backhaus SSwift G W. A thermo-acoustic-Stirling heat engine: detailed study. Journal of the Acoustical Society of America2000107(6): 3148–3166

[2]

Ueda YBiwa TMizutani UYazaki T. U, Yazaki T. Experimental studies of a thermoacoustic Stirling prime mover and its application to a cooler. Journal of the Acoustical Society of America2004115(3): 1134–1141 

[3]

Yu Z BLi QChen XGuo F ZXie X J. Experimental investigation on a thermo-acoustic engine having a looped tube and resonator. Cryogenics200545(8): 566–571 

[4]

Zhou GLi QLi Z YLi Q. Influence of resonator diameter on a miniature thermo-acoustic Stirling heat engine. Chinese Science Bulletin200853(1): 145–154

[5]

Ward W CSwift G W. Design environment for low-amplitude thermo-acoustic engines. Journal of the Acoustical Society of America199495(6): 3671–3672

[6]

Hao X HJu Y LBehera UKasthurirengan S. Influence of working fluid on the performance of a standing-wave thermo-acoustic prime mover. Cryogenics201151(9): 559–561

[7]

Yu Z BJaworski A JBackhaus S. Travelling-wave thermo-acoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy. Applied Energy201299: 135–145

[8]

Hariharan N MSivashanmugam PKasthurirengan S. Effect of resonator length and working fluid on the performance of twin thermo-acoustic heat engine—experimental and simulation studies. Computers & Fluids201375: 51–55

[9]

Mumith J AMakatsoris CKarayiannis T G. Design of a thermo-acoustic heat engine for low temperature waste heat recovery in food manufacturing. Applied Thermal Engineering201465(1-2): 588–596

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1191KB)

3299

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/