Transition metal chalcogenides in the oxygen evolution reaction: Surface reconstruction and in situ/operando characterization

Haihong Zhong , Nicolas Alonso-Vante

Front. Energy ›› 2025, Vol. 19 ›› Issue (6) : 805 -814.

PDF (2976KB)
Front. Energy ›› 2025, Vol. 19 ›› Issue (6) : 805 -814. DOI: 10.1007/s11708-025-1038-9
PERSPECTIVES

Transition metal chalcogenides in the oxygen evolution reaction: Surface reconstruction and in situ/operando characterization

Author information +
History +
PDF (2976KB)

Graphical abstract

Cite this article

Download citation ▾
Haihong Zhong, Nicolas Alonso-Vante. Transition metal chalcogenides in the oxygen evolution reaction: Surface reconstruction and in situ/operando characterization. Front. Energy, 2025, 19(6): 805-814 DOI:10.1007/s11708-025-1038-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu Y , Xiao B , Liu K . . Electrochemical synthesis of high-efficiency water electrolysis catalysts. Electrochemical Energy Reviews, 2025, 8(1): 2

[2]

Wei Y , Huang M , Wu Y . . Selenium-based catalysts for efficient electrocatalysis. Advanced Functional Materials, 2024, 34(42): 2404787

[3]

Zhang Y , Jiang Y , Abdukayum A . . Recent advances in selenide-based electrocatalysts for hydrogen/oxygen evolution reaction: From mechanism and synthesis to application. Materials Today. Energy, 2024, 44: 101641

[4]

Jiang Y , Gao S , Liu X . . Recent achievements in selenium-based transition metal electrocatalysts for pH-universal water splitting. Nano Research, 2024, 17(7): 5763–5785

[5]

Li W , Xiong D , Gao X . . The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes. Chemical Communications, 2019, 55(60): 8744–8763

[6]

Lu X F , Zhang S L , Sim W L . . Phosphorized CoNi2S4 yolk-shell spheres for highly efficient hydrogen production via water and urea electrolysis. Angewandte Chemie International Edition, 2021, 60(42): 22885–22891

[7]

Wang Z , Wan S , Chen Y . . In situ integration of bimetallic NiFe Prussian blue analogs on carbon cloth for the oxygen evolution reaction. Chemical Communications, 2025, 61(24): 4686–4689

[8]

Gao L , Cui X , Wang Z . . Operando unraveling photothermal-promoted dynamic active-sites generation in NiFe2O4 for markedly enhanced oxygen evolution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(7): e2023421118

[9]

Zhao B , Luo H , Liu J . . S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S, N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution. Chinese Chemical Letters, 2025, 36(5): 109919

[10]

Qu J , Dong Y , Zhang T . . Impact of bimetallic synergies on mo-doping NiFeOOH: Insights into enhanced OER activity and reconstructed electronic structure. Frontiers in Energy, 2024, 18(6): 850–862

[11]

Shen W , Yin J , Jin J . . Progress in in situ research on dynamic surface reconstruction of electrocatalysts for oxygen evolution reaction. Advanced Energy and Sustainability Research, 2022, 3(8): 2200036

[12]

Kreider M E , Burke Stevens M . Material changes in electrocatalysis: An in situ/operando focus on the dynamics of cobalt-based oxygen reduction and evolution catalysts. ChemElectroChem, 2022, 10(3): e202200958

[13]

Zhao J , Wang F , Lu X . . In-situ surface reconstruction of single-crystal (NiFe)3Se4 nano-pyramid arrays for efficient oxygen evolution. Journal of Colloid and Interface Science, 2023, 642: 532–539

[14]

Cao D , Shao J , Cui Y . . Interfacial engineering of copper–nickel selenide nanodendrites for enhanced overall water splitting in alkali condition. Small, 2023, 19(33): 2301613

[15]

Gao L , Cui X , Sewell C D . . Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chemical Society Reviews, 2021, 50(15): 8428–8469

[16]

Moon C J , Theerthagiri J , Kumari M L A . . Demystifying furfural electrooxidation descriptors via laser-patterned dianionic sulfur-selenide fused metal-chalcogenides. Chemical Engineering Journal, 2025, 513: 162873

[17]

Zhao Y , Adiyeri Saseendran D P , Huang C . . Oxygen evolution/reduction reaction catalysts: From in situ monitoring and reaction mechanisms to rational design. Chemical Reviews, 2023, 123(9): 6257–6358

[18]

Shen W , Ye Y , Xia Q . . Progress in in situ characterization of electrocatalysis. Energy & Environmental Science Catalysis, 2025, 3(1): 10–31

[19]

Bañares M A . Operando methodology: Combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catalysis Today, 2005, 100(1–2): 71–77

[20]

Xu G , Feng M , Wang S . . Kinetic regulation engineering and in-situ spectroscopy studies on transition-metal-based electrocatalysts for water splitting. ChemElectroChem, 2022, 9(15): e202200549

[21]

Zuo S , Wu Z P , Zhang H . . Operando monitoring and deciphering the structural evolution in oxygen evolution electrocatalysis. Advanced Energy Materials, 2022, 12(8): 2103383

[22]

Wu Z P , Zhang H , Zuo S . . Manipulating the local coordination and electronic structures for efficient electrocatalytic oxygen evolution. Advanced Materials, 2021, 33(40): 2103004

[23]

Tao S , Zhang G , Qian B . . Spectroscopically unraveling high-valence Ni‒Fe catalytic synergism in NiSe2/FeSe2 heterostructure. Applied Catalysis B: Environmental, 2023, 330: 122600

[24]

Wang M , Dong C L , Huang Y C . . Operando spectral and electrochemical investigation into the heterophase stimulated active species transformation in transition-metal sulfides for efficient electrocatalytic oxygen evolution. ACS Catalysis, 2020, 10(3): 1855–1864

[25]

Zhao Y , Wan W , Erni R . . Operando spectroscopic monitoring of metal chalcogenides for overall water splitting: New views of active species and sites. Angewandte Chemie International Edition, 2024, 63(24): e202400048

[26]

Zuo S , Wu Z P , Zhang G . . Correlating structural disorder in metal (oxy)hydroxides and catalytic activity in electrocatalytic oxygen evolution. Angewandte Chemie International Edition, 2024, 63(7): e202316762

[27]

Zhu J , Zi S , Zhang N . . Surface reconstruction of covellite CuS nanocrystals for enhanced OER catalytic performance in alkaline solution. Small, 2023, 19(37): 2301762

[28]

Liu L , Cao J , Hu S . . Antagonism effect of residual S triggers the dual-path mechanism for water oxidation. Journal of Energy Chemistry, 2024, 93: 568–579

[29]

Cao D , Liu D , Chen S . . Operando X-ray spectroscopy visualizing the chameleon-like structural reconstruction on an oxygen evolution electrocatalyst. Energy & Environmental Science, 2021, 14(2): 906–915

[30]

Chen M , Liu D , Qiao L . . In-situ/operando Raman techniques for in-depth understanding on electrocatalysis. Chemical Engineering Journal, 2023, 461: 141939

[31]

Chen M , Zhang Y , Chen J . . In situ Raman study of surface reconstruction of FeOOH/Ni3S2 oxygen evolution reaction electrocatalysts. Small, 2024, 20(23): 2309371

[32]

Wang C , Shao X , Pan J . . Redox bifunctional activities with optical gain of Ni3S2 nanosheets edged with MoS2 for overall water splitting. Applied Catalysis B: Environmental, 2020, 268: 118435

[33]

Duan Y , Yu Z Y , Hu S J . . Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angewandte Chemie International Edition, 2019, 58(44): 15772–15777

[34]

Gong X , Zhong H , Estudillo-Wong L A . . Bifunctional oxygen electrode cobalt–nickel sulfides catalysts originated from intercalated LDH precursors. Journal of Energy Chemistry, 2022, 74: 376–386

[35]

Wu Y , Li Y , Yuan M . . Operando capturing of surface self-reconstruction of Ni3S2/FeNi2S4 hybrid nanosheet array for overall water splitting. Chemical Engineering Journal, 2022, 427: 131944

[36]

Zhao C , Li J , Yang M . . S/Se dual-doping promotes the formation of active Ni/Fe oxyhydroxide for oxygen evolution reaction of (sea)water splitting. International Journal of Hydrogen Energy, 2022, 47(51): 21753–21759

[37]

Nguyen T X , Su Y H , Lin C C . . Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-performance oxygen evolution reaction electrocatalyst. Advanced Functional Materials, 2021, 31(48): 2106229

[38]

Shi Y , Du W , Zhou W . . Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction. Angewandte Chemie International Edition, 2020, 59(50): 22470–22474

[39]

Ma T , Xu W , Li B . . The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes. Angewandte Chemie International Edition, 2021, 60(42): 22740–22744

[40]

Kuang Y , Kenney M J , Meng Y . . Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6624–6629

[41]

Zhang H , He X , Dong K . . Selenate promoted stability improvement of nickel selenide nanosheet array with an amorphous NiOOH layer for seawater oxidation. Materials Today Physics, 2023, 38: 101249

[42]

Fan K , Zou H , Lu Y . . Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano, 2018, 12(12): 12369–12379

[43]

Zeng Y , Zhao M , Huang Z . . Surface reconstruction of water splitting electrocatalysts. Advanced Energy Materials, 2022, 12(33): 2201713

[44]

Prajapati A , Hahn C , Weidinger I M . . Best practices for in-situ and operando techniques within electrocatalytic systems. Nature Communications, 2025, 16(1): 2593

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (2976KB)

1381

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/