Working with uncertainty in life cycle costing: New approach applied to the case study on proton exchange membrane water electrolysis

Yajing Chen , Mohamed Benchat , Christine Minke

Front. Energy ››

PDF (2337KB)
Front. Energy ›› DOI: 10.1007/s11708-025-1033-1
RESEARCH ARTICLE

Working with uncertainty in life cycle costing: New approach applied to the case study on proton exchange membrane water electrolysis

Author information +
History +
PDF (2337KB)

Abstract

Hydrogen, recognized as a critical energy source, requires green production methods, such as proton exchange membrane water electrolysis (PEMWE) powered by renewable energy. This is a key step toward sustainable development, with economic analysis playing an essential role. Life cycle costing (LCC) is commonly used to evaluate economic feasibility, but traditional LCC analyses often provide a single cost outcome, which limits their applicability across diverse regional contexts. To address these challenges, a Python-based tool is developed in this paper, integrating a bottom-up approach with net present value (NPV) calculations and Monte Carlo simulations. The tool allows users to manage uncertainty by intervening in the input data, producing a range of outcomes rather than a single deterministic result, thus offering greater flexibility in decision-making. Applying the tool to a 5 MW PEMWE plant in Germany, the total cost of ownership (TCO) is estimated to range between €52 million and €82.5 million, with hydrogen production costs between 5.5 and 11.4 €/kg H2. There is a 95% probability that actual costs fall within this range. Sensitivity analysis reveals that energy prices are the key contributors to LCC, accounting for 95% of the variance in LCC, while iridium, membrane materials, and power electronics contribute to 75% of the variation in construction-phase costs. These findings underscore the importance of renewable energy integration and circular economy strategies in reducing LCC.

Graphical abstract

Keywords

life cycle costing (LCC) / green hydrogen / proton exchange membrane (PEM) water electrolysis / uncertainty / Monte Carlo method / Python

Cite this article

Download citation ▾
Yajing Chen, Mohamed Benchat, Christine Minke. Working with uncertainty in life cycle costing: New approach applied to the case study on proton exchange membrane water electrolysis. Front. Energy DOI:10.1007/s11708-025-1033-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

European Commission. Article 83(2) of Directive 2014/25/EU. Official Journal of the European Union, 2014, 94/262

[2]

Jackson D W Jr, Ostrom L L. Life cycle costing in industrial purchasing. Journal of Purchasing and Materials Management, 1980, 16(4): 8–12

[3]

Dell’Isola M D. Lifecycle costing. Society of American Military Engineers, 2009, 101: 73–74

[4]

UK Parliament Science, Technology Committee. The Role of Hydrogen in Achieving Net Zero. London, UK, 2022,

[5]

Hydrogen Council. Path to Hydrogen Competitiveness: A Cost Perspective. Brussels, Belgium, 2020,

[6]

International Organisation for Standardisation. Buildings and Constructed Assets - Service Life Planning - Life-Cycle Costing. ISO 15686-5, 2017,

[7]

European Commission. User Guide to the LCC Tool for Computers and Monitors. Brussels, Belgium, 2019,

[8]

European Commission. User Guide to the LCC Tool for Imaging Equipment. Brussels, Belgium, 2019,

[9]

European Commission. User Guide to the LCC Tool for Indoor Lighting. Brussels, Belgium, 2019,

[10]

European Commission. User Guide to the LCC Tool for Road Lighting and Traffic signals. Brussels, Belgium, 2019,

[11]

European Commission. User Guide to the LCC Tool for Vending Machine Services. Brussels, Belgium, 2019,

[12]

Verein Deutscher Ingenieure. Purchase, Operating and Maintenance of Production Equipment Using Life Cycle Costing (LCC). VDI 2884. Düsseldorf, Germany, 2025,

[13]

Deutsches Institut für Normung. Anwendungsleitfaden–Lebenszykluskosten. DIN EN 60300-3-3. Berlin, Germany, 2014,

[14]

The Organisation for Economic Co-operation, Development Commission. SIGMA Brief 34: Public Procurement - Life-cycle Costing. Brussels, Belgium, 2016,

[15]

Ilg P, Scope C, Muench S. . Uncertainty in life cycle costing for long-range infrastructure. Part I: Leveling the playing field to address uncertainties. International Journal of Life Cycle Assessment, 2017, 22(2): 277–292

[16]

Scope C, Ilg P, Muench S. . Uncertainty in life cycle costing for long-range infrastructure. Part II: Guidance and suitability of applied methods to address uncertainty. International Journal of Life Cycle Assessment, 2016, 21(8): 1170–1184

[17]

The Umweltbundesamt (UBA). Life Cycle Costing. Dessau-Roßlau, Germany, ,

[18]

Franzmann D, Heinrichs H, Lippkau F. . Green hydrogen cost-potentials for global trade. International Journal of Hydrogen Energy, 2023, 48(85): 33062–33076

[19]

Zun M T, McLellan B C. Cost projection of global green hydrogen production scenarios. Hydrogen, 2023, 4(4): 932–960

[20]

Frieden F, Leker J. Future costs of hydrogen: A quantitative review. Sustainable Energy & Fuels, 2024, 8(9): 1806–1822

[21]

Koj J C, Zapp P, Wieland C. . Life cycle environmental impacts and costs of water electrolysis technologies for green hydrogen production in the future. Energy, Sustainability and Society, 2024, 14(1): 64

[22]

Kotowicz J, Baszczeńska O, Niesporek K. Cost of green hydrogen. Energies, 2024, 17(18): 4651

[23]

Harvego E A, O’Brien J E, McKellar M G. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities. Idaho National Laboratory: INL/EXT-12-25968, 2012,

[24]

Bertuccioli L, Chan A, Hart D. . Development of Water Electrolysis in the European Union. Lausanne, Switzerland, 2014,

[25]

Noack C, Friedrich A, Bünger U. . Studie über die Planung einer Demonstrationsanlage zur Wasserstoff-Kraftstoffgewinnung durch Elektrolyse mit Zwischenspeicherung in Salzkavernen unter Druck. Stuttgart, Germany, 2014,

[26]

Shaner M R, Atwater H A, Lewis N S. . A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy & Environmental Science, 2016, 9(7): 2354–2371

[27]

Schmidt O, Gambhir A, Staffell I. . Future cost and performance of water electrolysis: An expert elicitation study. International Journal of Hydrogen Energy, 2017, 42(52): 30470–30492

[28]

Kuckshinrichs W, KetelaerT, KojJ C. Economic analysis of improved alkaline water electrolysis. Frontiers in Energy Research, 2017, 5

[29]

Hake J F, Koj J C, Kuckshinrichs W. . Towards a life cycle sustainability assessment of alkaline water electrolysis. Energy Procedia, 2017, 105: 3403–3410

[30]

Kuckshinrichs W, Koj J C. Levelized cost of energy from private and social perspectives: The case of improved alkaline water electrolysis. Journal of Cleaner Production, 2018, 203: 619–632

[31]

Böhm H, Goers S, Zauner A. Estimating future costs of power-to-gas—A component-based approach for technological learning. International Journal of Hydrogen Energy, 2019, 44(59): 30789–30805

[32]

Proost J. State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings. International Journal of Hydrogen Energy, 2019, 44(9): 4406–4413

[33]

Khzouz M, Gkanas E, Shao J. . Life cycle costing analysis: Tools and applications for determining hydrogen production cost for fuel cell vehicle technology. Energies, 2020, 13(15): 3783

[34]

Proost J. Critical assessment of the production scale required for fossil parity of green electrolytic hydrogen. International Journal of Hydrogen Energy, 2020, 45(35): 17067–17075

[35]

Minutillo M, Perna A, Forcina A. . Analyzing the levelized cost of hydrogen in refueling stations with on-site hydrogen production via water electrolysis in the Italian scenario. International Journal of Hydrogen Energy, 2021, 46(26): 13667–13677

[36]

Khouya A. Hydrogen production costs of a polymer electrolyte membrane electrolysis powered by a renewable hybrid system. International Journal of Hydrogen Energy, 2021, 46(27): 14005–14023

[37]

Lee B, Cho H S, Kim H. . Integrative techno-economic and environmental assessment for green H2 production by alkaline water electrolysis based on experimental data. Journal of Environmental Chemical Engineering, 2021, 9(6): 106349

[38]

UK Department for Business, Energy Strategy. Hydrogen Production Costs 2021. London, UK, 2021,

[39]

LAZARD Ltd. Lazard’s Levelized Cost of Hydrogen Analysis 2021. New York, US, 2021,

[40]

Holst M, Aschbrenner S, Smolinka T. . Cost Forecast for Low-Temperature Electrolysis — Technology Driven Bottom-Up Prognosis for PEM and Alkaline Water Electrolysis Systems. Fraunhofer Institute for Solar Energy Systems, 2021,

[41]

Fan J L, Yu P, Li K. . A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China. Energy, 2022, 242: 123003

[42]

Agora Industry. Levelised Cost of Hydrogen — Making the Application of the LCOH Concept More Consistent and More Useful. Berlin, Germany, 2023,

[43]

Müller L A, Leonard A, Trotter P A. . Green hydrogen production and use in low- and middle-income countries: A least-cost geospatial modelling approach applied to Kenya. Applied Energy, 2023, 343: 121219

[44]

Povacz L, Bhandari R. Analysis of the levelized cost of renewable hydrogen in Austria. Sustainability, 2023, 15(5): 4575

[45]

European Commission. European Commission Project on Life Cycle Costing Calculation Tool. Brussels, Belgium, 2015,

[46]

De Menna F, Loubiere M, Dietershagen J. . Methodology for Evaluating LCC.EU REFRESH Deliverable 5.2. European Commission, 2016,

[47]

Götz M, Lefebvre J, Mörs F. . Renewable power-to-gas: A technological and economic review. Renewable Energy, 2016, 85: 1371–1390

[48]

Saba S M, Müller M, Robinius M. . The investment costs of electrolysis—A comparison of cost studies from the past 30 years. International Journal of Hydrogen Energy, 2018, 43(3): 1209–1223

[49]

International Renewable Energy Agency (IRENA). Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5 °C Climate Goal. Masdar City, Abu Dhabi, 2020,

[50]

Badgett A, Ruth M, James B. . Methods identifying cost reduction potential for water electrolysis systems. Current Opinion in Chemical Engineering, 2021, 33: 100714

[51]

Nicita A, Squadrito G, Maggio G. Correction: Life-cycle cost (LCC) applied to hydrogen technologies: A review. International Journal of Life Cycle Assessment, 2023, 28(12): 1802

[52]

Krishnan S, Koning V, Theodorus De Groot M. . Present and future cost of alkaline and PEM electrolyser stacks. International Journal of Hydrogen Energy, 2023, 48(83): 32313–32330

[53]

Kelliher C. Quantitative Finance with Python: A Practical Guide to Investment Management, Trading, and Financial Engineering. Boston: CRC Press, 2022,

[54]

Mearig T, Morris L, Morgan M. Life Cycle Cost Analysis Handbook. 3rd ed. Juneau City: Alaska Department of Education & Early Development, 2018,

[55]

Fuchs C, Golenhofen F J. Mastering Disruption and Innovation in Product Management. Munich: Springer International Publishing, 2019,

[56]

Gerhardt-Mörsdorf J, Peterssen F, Burfeind P. . Life cycle assessment of a 5 MW polymer exchange membrane water electrolysis plant. Advanced Energy and Sustainability Research, 2024, 5(4): 2300135

[57]

Val D V, Stewart M G. Decision analysis for deteriorating structures. Reliability Engineering & System Safety, 2005, 87(3): 377–385

[58]

E.L.F Hallen und Maschinenbau GmbH. Der Aktuelle Stahlpreisindex, 2024. Niedersachsen, Germany, 2025,

[59]

Statistisches Bundesamt. Average Prices for Copper Worldwide from 2014 to 2025. Wiesbaden, Germany, 2025,

[60]

Trading Economics. Economic Indicator Database: Titanium, 2024. New York, US, 2025,

[61]

Johnson Matthey Plc. PGM (Platinum Group Metal) Management n.d., 2023. London, UK, 2025,

[62]

Toray Industries Inc. Toray Carbon Paper TGP-H-120 2024. Tokyo, Japan, 2025,

[63]

DuPont de Nemours (Deutschland) GmbH. DuPont Proton Austausch Membran Nafion 117 Membran 5×5 cm 2024. Neu-Isenburg, China, 2025,

[64]

Garlock Enpro Industries. Garlock Flanschdichtung 107×61×2 mm DN50 2024. New York, US, 2025,

[65]

DACE Price Booklet Edition 35. Stainless Steel Heat Exchangers 2024. Amsterdam, the Netherlands, 2025,

[66]

Mingyi Intelligent Equipment Co.. Stainless Steel Gas, Steam, Air, Liquid, Water Separator 2024. Tianjin, China, 2025,

[67]

Dalian Changyong Technology Co.. 2000 kW Air Cooled Dry Air Cooler 2024. Dalian, China, 2025,

[68]

DACE Price Booklet Edition 35. High and Low Voltage Underground Electrical Power Cables 2024. Amsterdam, the Netherlands, 2025,

[69]

MAG Micro Accessories Germany Gmb H. INFRALAN® Data Cable Cat.7 2024. Lengede, Germany, 2025,

[70]

DACE Price Booklet Edition 35. Singel-stage Centrifugal Pumps, 1’450 rpm – 22 kW 2024. Amsterdam, the Netherlands, 2025,

[71]

Green Power Co. Ltd. Rectifier 2024. Beijing, China, 2025,

[72]

Siemens AG. Central Processing Unit: 6ES7518–4AP00–0AB0 SIEMENS 2024. Munich, Germany, 2025,

[73]

ACM Abfall-&Containerservice Moers GmbH. Ihr Optimaler Container in 5 Schritten 40ft 2024. Moers, Germany, 2025,

[74]

SCHWENK Beton Berlin-Brandenburg Gmb H. Preisliste 2023: SCHWENK Beton Berlin-Brandenburg 2023. Ludwigsfelde, Germany, 2025,

[75]

European Central Bank. Euro Foreign Exchange Rederence Rates: US doller (USD) 2024. Frankfurt, Germany, 2025,

[76]

Berliner Wasserbetriebe. Die Gebühr für Trinkwasser 2024. Berlin, Germany, 2025,

[77]

Eurostat . Electricity Prices for Industrial Consumers - Bi-annual Data (until 2007): Ohne MwSt. und erstattungsfähige Steuern und Abgaben + [4162400] Industrie-Ih (Annual comsumption: 50 000 MWh) 2024. Luxembourg, 2025,

[78]

Eurostat . Preise Elektrizität für Nichthaushaltskunde, ab 2007 - halbjährliche Daten: Ohne MwSt. und erstattungsfähige Steuern und Abgaben + [MWH20000–69999] Gruppe IE 2024. Luxembourg, 2025,

[79]

Lotrič A, Sekavčnik M, Kuštrin I. . Life-cycle assessment of hydrogen technologies with the focus on EU critical raw materials and end-of-life strategies. International Journal of Hydrogen Energy, 2021, 46(16): 10143–10160

[80]

Schrott24 GmbH. E3- Schwerschrott 2024. Graz, Austria, 2025,

[81]

European Recycling Industries’ Confederation (EuRIC). Metal Recycling Factsheet. Belgium, EU, 2020,

[82]

Schrott24 GmbH. Kupfer, Blank II, Kerze 2024. Graz, Austria, 2025,

[83]

Matz L, Bensmann B, Hanke-Rauschenbach R, Minke C. Resource-efficient gigawatt water electrolysis in Germany—A circular economy potential analysis. Circular Economy and Sustainability, 2024, 4: 1153–1182

[84]

Deutsche Edelmetall & Grund Deg e.K. Goldankauf-Rechner: Platin 2024. Frankfurt, Germany, 2025,

[85]

Minke C, Suermann M, Bensmann B. . Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis?. International Journal of Hydrogen Energy, 2021, 46(46): 23581–23590

[86]

DESTATIS Statistisches Bundesamt. 11.2% Mehr Recycelte Elektroaltgeräte im Jahr 2020: Recyclingquote Gegenüber 2019 Leicht Gestiegen 2022. Wiesbaden, Germany, 2025,

[87]

Statistisches Bundesamt. Abfallbilanz 2021. Wiesbaden, Germany, 2025,

[88]

Schrott24 GmbH. Kupferkabel Mit Stecker 2024. Graz, Austria, 2025,

[89]

Schrott24 GmbH. Elektronikschrott, Gemischt 2024. Graz, Austria, 2025,

[90]

Kopp Umwelt Gmb H. Preisliste für Anlieferung von Abfällen und Wertstoffen. Heidenrod, Germany, 2024,

[91]

Hunter J D. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 2007, 9(3): 90–95

[92]

McKinney W. Data structures for statistical computing in python. In: Proceedings of the 9th Python in Science Conference 2010, Austin, US, 2010,

[93]

Shambaugh W S. Monaco: A Monte Carlo library for performing uncertainty and sensitivity analyses. In: Proceedings of the 21st Python in Science Conference 2022, Austin, US, 2022,

[94]

Saltelli A, Aleksankina K, Becker W. . Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environmental Modelling & Software, 2019, 114: 29–39

[95]

Burhenne S, Jacob D, Henze G P. Sampling based on Sobol’ sequences for Monte Carlo techniques applied to building simulations. In: Proceedings of Building Simulation 2011: 12th Conference of International Building Performance Simulation Association, Sydney, Australia, 2011,

[96]

Dimov I, Georgieva R. Monte Carlo method for numerical integration based on Sobol’s sequences. In: Nikolov G, Kolkovska N, Georgiev K, eds. Numerical Methods and Applications. Heidelberg: Springer Berlin, 2011,

[97]

Taylor S J, Letham B. Forecasting at scale. PeerJ Preprints, 2017, 5: e3190v2

[98]

Stefenon S F, Seman L O, Mariani V C. . Aggregating prophet and seasonal trend decomposition for time series forecasting of italian electricity spot prices. Energies, 2023, 16(3): 1371

[99]

Harris C R, Millman K J, van Der Walt S J. . Array programming with NumPy. Nature, 2020, 585: 357–362

[100]

Stan Development Team. Stan Modeling Language Users Guide and Reference Manual. , 2022,

[101]

Alipour Moghaddam J, Parnian M J, Rowshanzamir S. Preparation, characterization, and electrochemical properties investigation of recycled proton exchange membrane for fuel cell applications. Energy, 2018, 161: 699–709

RIGHTS & PERMISSIONS

The Author(s). This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (2337KB)

470

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/