Working with uncertainty in life cycle costing: New approach applied to the case study on proton exchange membrane water electrolysis
Yajing Chen , Mohamed Benchat , Christine Minke
Working with uncertainty in life cycle costing: New approach applied to the case study on proton exchange membrane water electrolysis
Hydrogen, recognized as a critical energy source, requires green production methods, such as proton exchange membrane water electrolysis (PEMWE) powered by renewable energy. This is a key step toward sustainable development, with economic analysis playing an essential role. Life cycle costing (LCC) is commonly used to evaluate economic feasibility, but traditional LCC analyses often provide a single cost outcome, which limits their applicability across diverse regional contexts. To address these challenges, a Python-based tool is developed in this paper, integrating a bottom-up approach with net present value (NPV) calculations and Monte Carlo simulations. The tool allows users to manage uncertainty by intervening in the input data, producing a range of outcomes rather than a single deterministic result, thus offering greater flexibility in decision-making. Applying the tool to a 5 MW PEMWE plant in Germany, the total cost of ownership (TCO) is estimated to range between €52 million and €82.5 million, with hydrogen production costs between 5.5 and 11.4 €/kg H2. There is a 95% probability that actual costs fall within this range. Sensitivity analysis reveals that energy prices are the key contributors to LCC, accounting for 95% of the variance in LCC, while iridium, membrane materials, and power electronics contribute to 75% of the variation in construction-phase costs. These findings underscore the importance of renewable energy integration and circular economy strategies in reducing LCC.
life cycle costing (LCC) / green hydrogen / proton exchange membrane (PEM) water electrolysis / uncertainty / Monte Carlo method / Python
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
Kuckshinrichs W, |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
The Author(s). This article is published with open access at link.springer.com and journal.hep.com.cn
/
| 〈 |
|
〉 |