Post-combustion carbon capture and conversion using advanced materials of Zn-based metal-organic frameworks: A mini review

Yuhui Jin , Fengchao Li , Yun Zheng , Wenqiang Zhang , Shufan Wang , Wei Yan , Bo Yu , Jiujun Zhang

Front. Energy ›› 2025, Vol. 19 ›› Issue (3) : 300 -311.

PDF (2902KB)
Front. Energy ›› 2025, Vol. 19 ›› Issue (3) : 300 -311. DOI: 10.1007/s11708-025-1009-1
MINI-REVIEW

Post-combustion carbon capture and conversion using advanced materials of Zn-based metal-organic frameworks: A mini review

Author information +
History +
PDF (2902KB)

Abstract

Developing environmentalyl friendly and energy-efficient CO2 adsorbents for post-combustion capture is a critical step toward achieving toward carbon neutrality. While aqueous amines and metal oxides have play pivotal roles in CO2 capture, their application is limited by issues such as secondary pollution and high energy consumption. In contrast, Zn-based metal-organic frameworks (Zn-based MOFs) have emerged as a green alternative, offering low toxicity reduced regeneration temperatures, and high efficiency in both CO2 adsorption and catalytic conversion into valuable fuels and chemicals. This mini review begins with a general introduction to MOFs in CO2 capture and conversion, followed by an overview of early studies on Zn-based MOFs for CO2 capture. It then summarizes recent research advancements in Zn-based MOFs for integrated CO2 capture and conversion. Finally, it discusses key challenges and future research directions for post-combustion CO2 capture and conversion using Zn-based MOFs.

Graphical abstract

Keywords

Zn-based metal-organic frameworks (Zn-based MOFs) / post-combustion capture / CO2 reduction reaction (CO2RR)

Cite this article

Download citation ▾
Yuhui Jin, Fengchao Li, Yun Zheng, Wenqiang Zhang, Shufan Wang, Wei Yan, Bo Yu, Jiujun Zhang. Post-combustion carbon capture and conversion using advanced materials of Zn-based metal-organic frameworks: A mini review. Front. Energy, 2025, 19(3): 300-311 DOI:10.1007/s11708-025-1009-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CanWCaiWZhangS, . Global carbon neutrality annual progress report. 2024–10, available at website of Tsinghua University

[2]

Xie J, Li K, Fan J. . Lifecycle carbon footprint and cost assessment for coal-to-liquid coupled with carbon capture, storage, and utilization technology in China. Frontiers in Energy, 2023, 17(3): 412–427

[3]

Ma Q, Wang S, Fu Y. . China’s policy framework for carbon capture, utilization and storage: Review, analysis, and outlook. Frontiers in Energy, 2023, 17(3): 400–411

[4]

Gao W, Liang S, Wang R. . Industrial carbon dioxide capture and utilization: State of the art and future challenges. Chemical Society Reviews, 2020, 49(23): 8584–8686

[5]

Sanz-Pérez E S, Murdock C R, Didas S A. . Direct capture of CO2 from ambient air. Chemical Reviews, 2016, 116(19): 11840–11876

[6]

Dunstan M T, Donat F, Bork A H. . CO2 capture at medium to high temperature using solid oxide-based sorbents: Fundamental aspects, mechanistic insights, and recent advances. Chemical Reviews, 2021, 121(20): 12681–12745

[7]

Yaghi O M, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework. Nature, 1995, 378(6558): 703–706

[8]

Ding M, Flaig R W, Jiang H L. . Carbon capture and conversion using metal-organic frameworks and MOF-based material. Chemical Society Reviews, 2019, 48(10): 2783–2828

[9]

Younas M, Rezakazemi M, Daud M. . Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Progress in Energy and Combustion Science, 2020, 80: 100849

[10]

Chao C, Deng Y, Dewil R. . Post-combustion carbon capture. Renewable & Sustainable Energy Reviews, 2021, 138: 110490

[11]

Shi X, Lee G A, Liu S. . Water-stable MOFs and hydrophobically encapsulated MOFs for CO2 capture from ambient air and wet flue gas. Materials Today, 2023, 65: 207–226

[12]

Rohde R C, Carsch K M, Dods M N. . High-temperature carbon dioxide capture in a porous material with terminal zinc hydride sites. Science, 2024, 386(6723): 814–819

[13]

Ye Z M, Xie Y, Kirlikovali K O. . Architecting metal-organic frameworks at molecular level toward direct air capture. Journal of the American Chemical Society, 2025, 147(7): 5495–5514

[14]

Queen W L, Hudson M R, Bloch E D. . Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn). Chemical Science, 2014, 5(12): 4569–4581

[15]

Ebadi Amooghin A, Sanaeepur H, Luque R. . Fluorinated metal-organic frameworks for gas separation. Chemical Society Reviews, 2022, 51(17): 7427–7508

[16]

SenkovskaIBonVMosbergerA, . Adsorption and separation by flexible MOFs. Advanced Materials, 2025, early access, doi:10.1002/adma.202414724

[17]

Chuah C Y, Ho Y L, Syed A M H. . Applicability of adsorbents in direct air capture (DAC): Recent progress and future perspectives. Industrial & Engineering Chemistry Research, 2025, 64(8): 4117–4147

[18]

Howarth A J, Liu Y, Li P. . Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nature Reviews. Materials, 2016, 1(3): 15018

[19]

WangXZhangT. An overview: A design strategy for dioxide carbon QCM gas sensor based on MOFs or COFs. Advanced Sensor Research, 2025, early access, doi:10.1002/adma.202414724

[20]

Rehman A, Farrukh S, Hussain A. . Synthesis and effect of metal–organic frame works on CO2 adsorption capacity at various pressures: A contemplating review. Energy & Environment, 2019, 31(3): 367–388

[21]

Shanmuga M S, Priya S S, Freudenberg N C. . Metal-organic framework-based photocatalysts for carbon dioxide reduction to methanol: A review on progress and application. Journal of CO2 Utilization, 2021, 43: 101374

[22]

Li L, Jung H S, Lee J W. . Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms. Renewable & Sustainable Energy Reviews, 2022, 162: 112441

[23]

Chipojola Mtukula A, Zhang X D, Hou S Z. . Metal-organic frameworks for efficient electrochemical reduction of carbon dioxide. European Journal of Inorganic Chemistry, 2023, 26(21): e202300170

[24]

Ding M, Flaig R W, Jiang H L. . Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chemical Society Reviews, 2019, 48(10): 2783–2828

[25]

Dong A, Chen D, Li Q. . Metal-organic frameworks for greenhouse gas applications. Small, 2023, 19(10): e2201550

[26]

Rosi N L, Kim J, Eddaoudi M. . Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. Journal of the American Chemical Society, 2005, 127(5): 1504–1518

[27]

Caskey S R, Wong-Foy A G, Matzger A J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. Journal of the American Chemical Society, 2008, 130(33): 10870–10871

[28]

Mcdonald T M, Lee W R, Mason J A. . Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). Journal of the American Chemical Society, 2012, 134(16): 7056–7065

[29]

McDonald T M, Mason J A, Kong X. . Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature, 2015, 519(7543): 303–308

[30]

Liao P Q, Zhou D D, Zhu A X. . Strong and dynamic CO2 sorption in a flexible porous framework possessing guest chelating claws. Journal of the American Chemical Society, 2012, 134(42): 17380–17383

[31]

Yu J, Xie L H, Li J R. . CO2 capture and separations using MOFs: Computational and experimental studies. Chemical Reviews, 2017, 117(14): 9674–9754

[32]

Sun M, Abazari R, Chen J. . Encapsulation of H4SiW12O40 into an amide-functionalized MOF: A highly efficient nanocomposite catalyst for oxidative desulfurization of diesel fuel. ACS Applied Materials & Interfaces, 2023, 15(45): 52581–52592

[33]

Dunstan M T, Donat F, Bork A H. . A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science, 2022, 374(6574): 1464–1469

[34]

Wang X, Alzayer M, Shih A J. . Tailoring hydrophobicity and pore environment in physisorbents for improved carbon dioxide capture under high humidity. Journal of the American Chemical Society, 2024, 146(6): 3943–3954

[35]

Feng W, Liu K, Liu J. . In-situ crystallization of CALF-20 nanoparticles in poly(acrylate) with enhanced CO2 capture capability toward high-humidity flue gases. Separation and Purification Technology, 2024, 343: 127102

[36]

Gopalsamy K, Fan D, Naskar S. . Engineering of an isoreticular series of CALF-20 metal-organic frameworks for CO2 capture. ACS Applied Energy Materials, 2024, 2(1): 96–103

[37]

Ho C H, Paesani F. Elucidating the competitive adsorption of H2O and CO2 in CALF-20: New insights for enhanced carbon capture metal-organic frameworks. ACS Applied Materials & Interfaces, 2023, 15(41): 48287–48295

[38]

Chen Z, Ho C H, Wang X. . Humidity-responsive polymorphism in CALF-20: A resilient MOF physisorbent for CO2 capture. ACS Materials Letters, 2023, 5(11): 2942–2947

[39]

Oktavian R, Goeminne R, Glasby L T. . Gas adsorption and framework flexibility of CALF-20 explored via experiments and simulations. Nature Communications, 2024, 15(1): 3898

[40]

Boyd P G, Chidambaram A, García-Díez E. . Data-driven design of metal-organic frameworks for wet flue gas CO2 capture. Nature, 2019, 576(7786): 253–256

[41]

Shi Z, Tao Y, Wu J. . Robust metal-triazolate frameworks for CO2 capture from flue gas. Journal of the American Chemical Society, 2020, 142(6): 2750–2754

[42]

AkayaHLamniniSSehaquiH, . Amine-functionalized cellulose as promising materials for direct CO2 capture: A review. ACS Applied Materials & Interfaces, 2025, early access

[43]

Wang H, Jiang Y, Han R. . Metal-organic frameworks for low-concentration gases adsorption under ambient conditions: Characterization, modification, processing, shaping and applications. Coordination Chemistry Reviews, 2025, 531: 216464

[44]

Zentou H, Hoque B, Abdalla M A. . Recent advances and challenges in solid sorbents for CO2 capture. Carbon Capture Science & Technology, 2025, 15: 100386

[45]

Zhu Z, Parker S T, Forse A C. . Cooperative carbon dioxide capture in diamine-appended magnesium-olsalazine frameworks. Journal of the American Chemical Society, 2023, 145(31): 17151–17163

[46]

Kim E J, Siegelman R L, Jiang H Z H. . Cooperative carbon capture and steam regeneration with tetraamine-appended metal-organic frameworks. Science, 2020, 369(6502): 392–396

[47]

Siegelman R L, Kim E J, Long J R. Porous materials for carbon dioxide separations. Nature Materials, 2021, 20(8): 1060–1072

[48]

Li H, Zhao D. Heat up to catch carbon. Science, 2024, 386(6723): 727–728

[49]

Sharifian R, Wagterveld R M, Digdaya I A. . Electrochemical carbon dioxide capture to close the carbon cycle. Energy & Environmental Science, 2021, 14(2): 781–814

[50]

Hanan A, Lakhan M N, Bibi F. . MOFs coupled transition metals, graphene, and MXenes: Emerging electrocatalysts for hydrogen evolution reaction. Chemical Engineering Journal, 2024, 482: 148776

[51]

Hao L P, Hanan A, Walvekar R. . Synergistic integration of MXene and metal-organic frameworks for enhanced electrocatalytic hydrogen evolution in an alkaline environment. Catalysts, 2023, 13(5): 802

[52]

Hanan A, Lakhan M N, Walvekar R. . Co3O4 derived ZnO: An effective electrocatalyst for oxygen evolution reaction in alkaline media. International Journal of Hydrogen Energy, 2025, 104: 407–415

[53]

Lakhan M N, Hanan A, Wang Y. . Recent progress on nickel- and iron-based metallic organic frameworks for oxygen evolution reaction: A review. Langmuir, 2024, 40(5): 2465–2486

[54]

Zhang C, Lin Z, Jiao L. . Metal-organic frameworks for electrocatalytic CO2 reduction: From catalytic site design to microenvironment modulation. Angewandte Chemie International Edition, 2024, 63(50): e202414506

[55]

Kang X, Zhu Q, Sun X. . Highly efficient electrochemical reduction of CO2 to CH4 in an ionic liquid using a metal-organic framework cathode. Chemical Science, 2016, 7(1): 266–273

[56]

Wang Y, Hou P, Wang Z. . Zinc imidazolate metal-organic frameworks (ZIF-8) for electrochemical reduction of CO2 to CO. ChemPhysChem, 2017, 18(22): 3142–3147

[57]

Al-Attas T A, Marei N N, Yong X. . Ligand-engineered metal-organic frameworks for electrochemical reduction of carbon dioxide to carbon monoxide. ACS Catalysis, 2021, 11(12): 7350–7357

[58]

Shao P, Yi L, Chen S. . Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers. Journal of Energy Chemistry, 2020, 40: 156–170

[59]

Wang Q, Gong Y, Tan Y. . Cooperative alkaline hydrogen evolution via inducing local electric field and electron localization. Chinese Journal of Catalysis, 2023, 54: 229–237

[60]

Fei Y, Abazari R, Ren M. . Defect engineering in a nanoporous thulium-organic framework in catalyzing knoevenagel condensation and chemical CO2 fixation. Inorganic Chemistry, 2024, 63(40): 18914–18923

[61]

Abazari R, Ghorbani N, Shariati J. . Copper-based bio-MOF/GO with Lewis basic sites for CO2 fixation into cyclic carbonates and C–C bond-forming reactions. Inorganic Chemistry, 2024, 63(27): 12667–12680

[62]

Habibzadeh F, Mardle P, Zhao N. . Ion exchange membranes in electrochemical CO2 reduction processes. Electrochemical Energy Reviews, 2023, 6(1): 26

[63]

Hossain M N, Zhang L, Neagu R. . Free-standing single-atom catalyst-based electrodes for CO2 reduction. Electrochemical Energy Reviews, 2024, 7(1): 5

[64]

Wu M, Dong F, Yang Y. . Emerging atomically precise metal nanoclusters and ultrasmall nanoparticles for efficient electrochemical energy catalysis: Synthesis strategies and surface/interface engineering. Electrochemical Energy Reviews, 2024, 7(1): 10

[65]

Prakash J, Chen Z, Saini S. . Advancements on metal oxide semiconductor photocatalysts in photo-electrochemical conversion of carbon dioxide into fuels and other useful products. Frontiers in Energy, 2024, 18(2): 187–205

[66]

Xue J, Chen Z, Zhang Y. . A review on plasmonic enhancement of activity and selectivity in electrocatalytic CO2 reduction. Frontiers in Energy, 2024, 18(4): 399–417

[67]

Zheng Y, Wang J, Yu B. . A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): Advanced materials and technology. Chemical Society Reviews, 2017, 46(5): 1427–1463

[68]

Zheng Y, Chen Z, Zhang J. Solid oxide electrolysis of H2O and CO2 to produce hydrogen and low-carbon fuel. Electrochemical Energy Reviews, 2021, 4(3): 508–517

[69]

Kang S, Pan Z, Guo J. . Scientometric analysis of research trends on solid oxide electrolysis cells for green hydrogen and syngas production. Frontiers in Energy, 2024, 18(5): 583–611

[70]

Hou X, Jiang Y, Wei K. . Syngas production from CO2 and H2O via solid-oxide electrolyzer cells: Fundamentals, materials, degradation, operating conditions, and applications. Chemical Reviews, 2024, 124(8): 5119–5166

[71]

Li F, Li Y, Chen H. . Impact of strain-induced changes in defect chemistry on catalytic activity of Nd2NiO4+δ electrodes. ACS Applied Materials & Interfaces, 2018, 10(43): 36926–36932

[72]

Zheng Y, Gao L, He S. . Reduction potential of the energy penalty for CO2 capture in CCS. Frontiers in Energy, 2023, 17(3): 390–399

[73]

Zhu F, Ge J, Gao Y. . Molten salt electro-preparation of graphitic carbons. Exploration, 2023, 3(1): 20210186

[74]

Tang T, Wang Z, Guan J. Achievements and challenges of copper-based single-atom catalysts for the reduction of carbon dioxide to C2+products. Exploration, 2023, 3(5): 20230011

[75]

Cao J, Hu Y, Zheng Y. . Recent advances and challenges of nitrogen/nitrate electro catalytic reduction to ammonia synthesis. Frontiers in Energy, 2024, 18(2): 128–140

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (2902KB)

4626

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/