An ultra-low platinum loading ORR electrocatalyst with high efficiency: Synergistic effects of Pt and Fe-N-C support
Wenbin Tang , Shuyue Xia , Haiwen Chou , Jianan Zhao , Yi Zhou , Qinghong Huang , Nengfei Yu , Yuping Wu
Front. Energy ›› 2025, Vol. 19 ›› Issue (5) : 729 -737.
An ultra-low platinum loading ORR electrocatalyst with high efficiency: Synergistic effects of Pt and Fe-N-C support
The oxygen reduction reaction (ORR) plays a crucial role in key processes of fuel cells and zinc-air batteries. To enable commercialization, reducing the platinum (Pt) content and increasing the specific activity per unit mass is essential. A promising approach involves synthesizing of Fe-N-C precursors via the polyaniline (PANI) pathway, which ensures a uniform distribution of Fe-N-C species and facilitates the subsequent adsorption of platinum ions. This leads to the formation of Pt-Fe bimetallic alloys. The synergistic interaction between Pt and Fe-N-C sites promotes the homogeneous dispersion of Pt and the formation of smaller particle sizes, which in turn enhances intrinsic activity and stability of the catalyst. Notably, the Pt/Fe-N-C catalyst, featuring an ultra-low Pt loading of just 1.79 wt%, exhibits a remarkable doubling of mass activity compared to conventional catalysts. Moreover, zinc-air batteries using this catalyst achieve an impressive peak power density of 200 mW/cm2.
oxygen reduction reaction (ORR) / fuel cells / Pt-Fe-N-C catalysts / synergistic effect / mass activity
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
Higher Education Press 2025
Supplementary files
/
| 〈 |
|
〉 |