Recent advances in stabilization strategies for zinc anodes in aqueous zinc-ion batteries

Yitong Han , Nuo Xu , Yuelong Yin , Ziqing Ruan , Yujie Shen , Shu Fang , Leixin Yang

Front. Energy ›› 2025, Vol. 19 ›› Issue (6) : 862 -883.

PDF (8335KB)
Front. Energy ›› 2025, Vol. 19 ›› Issue (6) :862 -883. DOI: 10.1007/s11708-025-0999-z
REVIEW ARTICLE

Recent advances in stabilization strategies for zinc anodes in aqueous zinc-ion batteries

Author information +
History +
PDF (8335KB)

Abstract

Rechargeable aqueous metal-ion batteries are promising alternative energy storage devices in the post-lithium-ion era due to their inherent safety and environmental compatibility. Among them, aqueous zinc ion batteries (AZIBs) stand out as next-generation energy storage systems, offering low cost, high safety, and eco-friendliness. Nevertheless, the instability of Zn metal anodes, manifested as Zn dendrite growth, interfacial side reactions, and hydrogen (H2) evolution, remains a major obstacle to commercialization. To address these challenges, extensive research has been conducted to understand and mitigate these issues. This review comprehensively summarizes recent advances in Zn anode stabilization strategies, including artificial solid electrolyte interphase (SEI) layers, structural optimization, electrolyte modification, and bioinspired designs. These approaches collectively aim to achieve uniform Zn deposition, suppress parasitic reactions, and enhance cycling stability. Furthermore, it critically evaluates the advantages and feasibility of different strategies, discuss potential synergistic effects of multi-strategy integration, and provide perspectives for future research directions.

Graphical abstract

Keywords

aqueous zinc-ion batteries (AZIBs) / Zn anode / stability / artificial solid electrolyte interphase (SEI) layers / electrolyte modification / bioinspired

Cite this article

Download citation ▾
Yitong Han, Nuo Xu, Yuelong Yin, Ziqing Ruan, Yujie Shen, Shu Fang, Leixin Yang. Recent advances in stabilization strategies for zinc anodes in aqueous zinc-ion batteries. Front. Energy, 2025, 19(6): 862-883 DOI:10.1007/s11708-025-0999-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Belmabkhout Y , Bhatt P M , Adil K . . Author correction: Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nature Energy, 2019, 4(1): 83

[2]

Chuah C Y , Goh K , Yang Y . . Harnessing filler materials for enhancing biogas separation membranes. Chemical Reviews, 2018, 118(18): 8655–8769

[3]

Javed S , Suo G , Habib L . . Recent progress in zinc-ion battery anodes and cathodes: Materials design, dendrite control, and future perspectives. Journal of Energy Storage, 2025, 118: 116271

[4]

Rui K , Zhang Z , Yan S . . Anion-cation synergy of d-pantothenic acid hemicalcium for dendrite-free zinc anodes in aqueous zinc-ion batteries. Journal of Energy Storage, 2025, 129: 117300

[5]

Xie Y , Wu Y , Fan Y . . Electrode architecture engineering boosting rate capability of manganese oxide-based cathodes for aqueous zinc ion batteries. Chemical Engineering Journal, 2025, 518: 164702

[6]

Yang H , Chang Z , Qiao Y . . Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angewandte Chemie International Edition, 2020, 59(24): 9377–9381

[7]

Pu S D , Gong C , Tang Y T . . Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Advanced Materials, 2022, 34(28): 2202552

[8]

Aguilar I , Brown J , Godeffroy L . . A key advance toward practical aqueous Zn/MnO2 batteries via better electrolyte design. Joule, 2025, 9(1): 101784

[9]

Shang Y , Kundu D . A path forward for the translational development of aqueous zinc-ion batteries. Joule, 2023, 7(2): 244–250

[10]

Huang S , Zhu J , Tian J . . Recent progress in the electrolytes of aqueous zinc-ion batteries. Chemistry, 2019, 25(64): 14480–14494

[11]

Zhang N , Ji Y R , Wang J C . . Understanding of the charge storage mechanism of MnO2-based aqueous zinc-ion batteries: Reaction processes and regulation strategies. Journal of Energy Chemistry, 2023, 82: 423–463

[12]

He Z , Guo J , Xiong F . . Re-imagining the daniell cell: Ampere-hour-level rechargeable Zn–Cu batteries. Energy & Environmental Science, 2023, 16: 5832–5841

[13]

Chen D , Pan L , Pei P . . Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives. Nano Research, 2022, 15(6): 5038–5063

[14]

Li C , Zhang D , Ma F . . A high-rate and long-life aqueous rechargeable ammonium zinc hybrid battery. ChemSusChem, 2019, 12(16): 3732–3736

[15]

Zhu S E , Yang W J , Zhou Y . . Synthesis of zinc porphyrin complex for improving mechanical, UV-resistance, thermal stability and fire safety properties of polystyrene. Chemical Engineering Journal, 2022, 442: 136367

[16]

Shang W , Li Q , Jiang F . . Boosting Zn||I2 battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Letters, 2022, 14(1): 82

[17]

Sudhakara S M , Bhat Z M , Devendrachari M C . . A zinc-quinone battery for paired hydrogen peroxide electrosynthesis. Journal of Colloid and Interface Science, 2020, 559: 324–330

[18]

Wang F , Tseng J , Liu Z . . A stimulus-responsive zinc–iodine battery with smart overcharge self-protection function. Advanced Materials, 2020, 32(16): 2000287

[19]

Zhang T , Zhang S , Li L . . Self-decoupled oxygen electrocatalysis for ultrastable rechargeable Zn-air batteries with mild-acidic electrolyte. ACS Nano, 2023, 17(17): 17476–17488

[20]

Wang M , Meng Y , Li X . . Challenges and strategies for zinc anodes in aqueous zinc-ion batteries. Chemical Engineering Journal, 2025, 507: 160615

[21]

Gao P , Ru Q , Yan H . . A durable Na0.56V2O5 nanobelt cathode assisted by hybrid cationic electrolyte for high-performance aqueous zinc-ion batteries. ChemElectroChem, 2020, 7(1): 283–288

[22]

Guo S , Qin L , Zhang T . . Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Materials, 2021, 34: 545–562

[23]

Liu X , Cao T , Li S . . Unsaturated coordination modes of Mn/V in manganese vanadate: Inner capture and surface migration of zinc ions for high performance zinc-ion battery. Journal of Power Sources, 2022, 525: 231134

[24]

Li Q , Bai M , Wang X . . A gradient solid-like electrolyte stabilizing Zn anodes by in situ formation of a ZnSe interphase. ACS Applied Materials & Interfaces, 2025, 17(8): 12218–12226

[25]

Loh J R , Xue J , Lee W S V . Challenges and strategies in the development of zinc-ion batteries. Small Methods, 2023, 7(7): 2300101

[26]

Higashi S , Lee S W , Lee J S . . Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nature Communications, 2016, 7(1): 11801

[27]

Wang J , Huang W , Pei A . . Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nature Energy, 2019, 4(8): 664–670

[28]

Yang L , Ma Q , Yin Y . . Construction of desolvated ionic COF artificial SEI layer stabilized Zn metal anode by in-situ electrophoretic deposition. Nano Energy, 2023, 117: 108799

[29]

Wei T , Ren Y , Wang Y . . Addition of dioxane in electrolyte promotes (002)-textured zinc growth and suppressed side reactions in zinc-ion batteries. ACS Nano, 2023, 17(4): 3765–3775

[30]

Hao J , Li X , Zeng X . . Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy & Environmental Science, 2020, 13(11): 3917–3949

[31]

Liu X , Yang F , Xu W . . Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes. Advanced Science, 2020, 7(21): 2002173

[32]

Xin J H , Liu C , Li J B . . Temperature-modulated interfacial synthesis of fully aromatic polyurea for superior solvent/thermal-resistant separation. ACS Materials Letters, 2024, 6(5): 1897–1905

[33]

Zhang H , Gan X , Song Z . . Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode. Angewandte Chemie International Edition, 2023, 135: e202217833

[34]

Wang Z , Zhu X , Tao X . . Realizing high reversible zinc metal anode by modulating surface chemistry and crystal structure. Advanced Functional Materials, 2024, 34(26): 2316223

[35]

Yuan W , Nie X , Ma G . . Realizing textured zinc metal anodes through regulating electrodeposition current for aqueous zinc batteries. Angewandte Chemie International Edition, 2023, 62(10): e202218386

[36]

Zeng X , Mao J , Hao J . . Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Advanced Materials, 2021, 33(11): 2007416

[37]

Du W , Ang E H , Yang Y . . Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy & Environmental Science, 2020, 13(10): 3330–3360

[38]

Liu D H , Bai Z , Li M . . Developing high safety Li-metal anodes for future high-energy Li-metal batteries: Strategies and perspectives. Chemical Society Reviews, 2020, 49(15): 5407–5445

[39]

Cai Z , Ou Y , Wang J . . Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Materials, 2020, 27: 205–211

[40]

Liu M , Yuan W , Ma G . . In-situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes. Angewandte Chemie International Edition, 2023, 62(27): e202304444

[41]

Zhang Q , Luan J , Huang X . . Revealing the role of crystal orientation of protective layers for stable zinc anode. Nature Communications, 2020, 11(1): 3961

[42]

Zhao K , Wang C , Yu Y . . Ultrathin surface coating enables stabilized zinc metal anode. Advanced Materials Interfaces, 2018, 5(16): 1800848

[43]

Xie X , Liang S , Gao J . . Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy & Environmental Science, 2020, 13(2): 503–510

[44]

Hao J , Li B , Li X . . An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Advanced Materials, 2020, 32(34): 2003021

[45]

Wu K , Yi J , Liu X . . Regulating Zn deposition via an artificial solid–electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Letters, 2021, 13(1): 79

[46]

Liang P , Yi J , Liu X . . Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Advanced Functional Materials, 2020, 30(13): 1908528

[47]

Tang D , Zhang X , Han D . . Switching hydrophobic interface with ionic valves for reversible zinc batteries. Advanced Materials, 2024, 36(33): 2406071

[48]

Li T , Yan S , Dong H . . Engineering hydrophobic protective layers on zinc anodes for enhanced performance in aqueous zinc-ion batteries. Journal of Energy Chemistry, 2024, 97: 1–11

[49]

Zhao Z , Zhao J , Hu Z . . Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy & Environmental Science, 2019, 12(6): 1938–1949

[50]

Zhou W , Feng J , Chen Z . . Inhibition of zinc dendrite growth by a preferential crystal surface modulation strategy. Next Materials, 2025, 7: 100517

[51]

Jiang S , Yuan G-Q , Cui B-L . . Pristine UiO-67 nanoparticles for zinc dendrite inhibition. Rare Metals, 2024, 43: 5419–5426

[52]

Hao J , Li X , Zhang S . . Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Advanced Functional Materials, 2020, 30(30): 2001263

[53]

Zhu M , Hu J , Lu Q . . A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Advanced Materials, 2021, 33(8): 2007497

[54]

Hieu L T , So S , Kim I T . . Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life. Chemical Engineering Journal, 2021, 411: 128584

[55]

Chen P , Yuan X , Xia Y . . An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Advanced Science, 2021, 8(11): 2100309

[56]

Cao Z , Zhu X , Xu D . . Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Materials, 2021, 36: 132–138

[57]

Chen A , Zhao C , Gao J . . Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy & Environmental Science, 2023, 16(1): 275–284

[58]

Li D , Cao L , Deng T . . Design of a solid electrolyte interphase for aqueous Zn batteries. Angewandte Chemie International Edition, 2021, 60(23): 13035–13041

[59]

Cui Y , Zhao Q , Wu X . . An interface-bridged organic–inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angewandte Chemie International Edition, 2020, 59(38): 16594–16601

[60]

Wang H , Luo C , Qian Y . . Upcycling of phosphogypsum waste for efficient zinc-ion batteries. Journal of Energy Chemistry, 2023, 81: 157–166

[61]

Zhang R , Feng Y , Ni Y . . Bifunctional interphase with target-distributed desolvation sites and directionally depositional ion flux for sustainable zinc anode. Angewandte Chemie International Edition, 2023, 135(25): e202304503

[62]

Huang C , Zhao X , Liu S . . Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Advanced Materials, 2021, 33(38): 2100445

[63]

Zhang S-J , Hao J , Luo D . . Dual-function electrolyte additive for highly reversible Zn anode. Advanced Energy Materials, 2021, 11(37): 2102010

[64]

Xu J , Lv W , Yang W . . In situ construction of protective films on Zn metal anodes via natural protein additives enabling high-performance zinc ion batteries. ACS Nano, 2022, 16(7): 11392–11404

[65]

Liu B , Wei C , Zhu Z . . Regulating surface reaction kinetics through ligand field effects for fast and reversible aqueous zinc batteries. Angewandte Chemie International Edition, 2022, 61(44): e202212780

[66]

Zhang Z , Yan S , Dong H . . Investigating the role of non-ionic surfactants as electrolyte additives for improved zinc anode performance in aqueous batteries. Journal of Colloid and Interface Science, 2025, 677: 885–894

[67]

Wang Y , Li Q , Hong H . . Lean-water hydrogel electrolyte for zinc ion batteries. Nature Communications, 2023, 14(1): 3890

[68]

Zhang H , Gan X , Yan Y . . A sustainable dual cross-linked cellulose hydrogel electrolyte for high-performance zinc-metal batteries. Nano-Micro Letters, 2024, 16(1): 106

[69]

Huang J , Chi X , Wu J . . High-concentration dual-complex electrolyte enabled a neutral aqueous zinc-manganese electrolytic battery with superior stability. Chemical Engineering Journal, 2022, 430: 133058

[70]

Gao X , Dong H , Carmalt C J . . Recent advances of aqueous electrolytes for zinc-ion batteries to mitigate side reactions: A review. ChemElectroChem, 2023, 10(19): e202300200

[71]

Lyu Y , Yuwono J A , Wang P . . Organic pH buffer for dendrite-free and shuttle-free Zn-I2 batteries. Angewandte Chemie International Edition, 2023, 62(21): e202303011

[72]

Guo N , Huo W , Dong X . . A review on 3D zinc anodes for zinc ion batteries. Small Methods, 2022, 6(9): 2200597

[73]

Bu F , Gao Y , Zhao W . . Bio-inspired trace hydroxyl-rich electrolyte additives for high-rate and stable Zn-ion batteries at low temperatures. Angewandte Chemie International Edition, 2024, 63(9): e202318496

[74]

Wang B , Zheng R , Yang W . . Synergistic solvation and interface regulations of eco-friendly silk peptide additive enabling stable aqueous zinc-ion batteries. Advanced Functional Materials, 2022, 32(23): 2112693

[75]

Dong H , Hu X , Liu R . . Bio-inspired polyanionic electrolytes for highly stable zinc-ion batteries. Angewandte Chemie International Edition, 2023, 62(41): e202311268

[76]

He G , Parken I P . Sustainable and biocompatible Zn-based batteries. National Science Review, 2023, 10(4): nwad055

[77]

Wen Q , Fu H , Wang Z-y . . A hydrophobic layer of amino acid enabling dendrite-free Zn anodes for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2022, 10(34): 17501–17510

[78]

Huang Y , Zhuang Y , Guo L . . Stabilizing anode-electrolyte interface for dendrite-free Zn-ion batteries through orientational plating with zinc aspartate additive. Small, 2024, 20(10): 2306211

[79]

Jian Q , Sun J , Li H . . Phase-field modeling of zinc dendrites growth in aqueous zinc batteries. International Journal of Heat and Mass Transfer, 2024, 223: 125252

[80]

Yuan X , He C , Wang J . . Inhibition of zinc dendrite growth in zinc-air batteries by alloying the anode with Ce and Yb. Journal of Alloys and Compounds, 2024, 970: 172523

[81]

Mu Y , Li Z , Wu B K . . 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nature Communications, 2023, 14(1): 4205

[82]

Al-Abbasi M , Zhao Y , He H . . Challenges and protective strategies on zinc anode toward practical aqueous zinc-ion batteries. Carbon Neutralization, 2024, 3(1): 108–141

[83]

He W , Li X , Dai X . . Redox concomitant formation method for fabrication of Cu(I)−MOF/polymer composites with antifouling properties. Angewandte Chemie International Edition, 2024, 63(44): e202411539

[84]

Qian G , Zan G , Li J . . Structural, dynamic, and chemical complexities in zinc anode of an operating aqueous Zn-ion battery. Advanced Energy Materials, 2022, 12(21): 2200255

[85]

Cao Q , Gao Y , Pu J . . Materials and structural design for preferable Zn deposition behavior toward stable Zn anodes. SmartMat, 2024, 5(1): e1194

[86]

Guo X , Zhang S , Hong H . . Interface regulation and electrolyte design strategies for zinc anodes in high-performance zinc metal batteries. iScience, 2025, 28(2): 111751

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (8335KB)

Supplementary files

FEP-25063-OF-HY_suppl_1

1378

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/