Recent advancements in all-inorganic and organic-inorganic hybrid metal halide materials for photocatalytic CO2 reduction reaction

Ruhao Chen , Cunbi Wang , Xu Zhang , Chengdong Peng , Chao Lin , Gaokun Chen , Yuexiao Pan

Front. Energy ›› 2025, Vol. 19 ›› Issue (4) : 450 -470.

PDF (4813KB)
Front. Energy ›› 2025, Vol. 19 ›› Issue (4) : 450 -470. DOI: 10.1007/s11708-025-0996-2
REVIEW ARTICLE

Recent advancements in all-inorganic and organic-inorganic hybrid metal halide materials for photocatalytic CO2 reduction reaction

Author information +
History +
PDF (4813KB)

Abstract

The utilization of solar energy to address energy and environmental challenges has a seen a significant growth in recent years. Metal halides, which offer unique advantages such as tunable bandgaps, high light absorption efficiencies, favorable product release rates, and low exciton binding energies, have emerged as excellent photocatalysts for energy conversion. This paper reviews the recent advancements in both all-inorganic and organic-inorganic hybrid metal halide photocatalytic materials, including the fundamental mechanisms of photocatalytic CO2 reduction, various synthesis strategies for metal halide photocatalysts, and their applications in the field of photocatalysis. Finally, it examines the current challenges associated with metal halide materials and explores potential solutions for metal halide materials, along with their future prospects in photocatalysis applications.

Graphical abstract

Keywords

metal halide / photocatalysts / organic-inorganic hybrid / all-inorganic / photocatalytic CO2 reduction

Cite this article

Download citation ▾
Ruhao Chen, Cunbi Wang, Xu Zhang, Chengdong Peng, Chao Lin, Gaokun Chen, Yuexiao Pan. Recent advancements in all-inorganic and organic-inorganic hybrid metal halide materials for photocatalytic CO2 reduction reaction. Front. Energy, 2025, 19(4): 450-470 DOI:10.1007/s11708-025-0996-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang J, Liu J L, Du Z L. . Recent advances in metal halide perovskite photocatalysts: Properties, synthesis and applications. Journal of Energy Chemistry, 2021, 54: 770–785

[2]

Wang G Q, Zhang F J, Wang Y R. . Research progress on photocatalytic reduction of CO2 based on CsPbBr3 perovskite materials. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2022, 8(8): e202200230

[3]

Collado L, Reynal A, Fresno F. . Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nature Communications, 2018, 9(1): 4986

[4]

Roy S C, Varghese O K, Paulose M. . Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano, 2010, 4(3): 1259–1278

[5]

Zhou J, Chen W C, Sun C Y. . Oxidative polyoxometalates modified graphitic carbon nitride for visible-light CO2 reduction. ACS Applied Materials & Interfaces, 2017, 9(13): 11689–11695

[6]

Tu W G, Zhou Y, Zou Z G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Advanced Materials, 2014, 26(27): 4607–4626

[7]

Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52(29): 7372–7408

[8]

Du Z L, Artemyev M, Wang J. . Performance improvement strategies for quantum dot-sensitized solar cells: A review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(6): 2464–2489

[9]

Wang D H, Yin F F, Du Z L. . Recent progress in quantum dot-sensitized solar cells employing metal chalcogenides. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(46): 26205–26226

[10]

Dong W J, Ji Y M, Wang J. . Evolution of the properties and composition of heavy oil by injecting dry boiler flue gas. ACS Omega, 2021, 6(50): 34675–34686

[11]

Hiragond C B, Powar N S, In S I. Recent developments in lead and lead-free halide perovskite nanostructures towards photocatalytic CO2 reduction. Nanomaterials, 2020, 10(12): 2569

[12]

Li X, Yu J G, Jaroniec M. . Cocatalysts for selective photoreduction of CO2 into solar fuels. Chemical Reviews, 2019, 119(6): 3962–4179

[13]

Sorcar S, Hwang Y J, Lee J W. . CO2, water, and sunlight to hydrocarbon fuels: A sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%. Energy & Environmental Science, 2019, 12(9): 2685–2696

[14]

Ali S, Flores M C, Razzaq A. . Gas phase photocatalytic CO2 reduction, “A brief overview for benchmarking”. Catalysts, 2019, 9(9): 727

[15]

Hiragond C, Ali S, Sorcar S. . Hierarchical nanostructured photocatalysts for CO2 photoreduction. Catalysts, 2019, 9(4): 370

[16]

Ali S, Lee J, Kim H. . Sustained, photocatalytic CO2 reduction to CH4 in a continuous flow reactor by earth-abundant materials: Reduced titania-Cu2O Z-scheme heterostructures. Applied Catalysis B: Environmental, 2020, 279: 119344

[17]

Chen X B, Shen S H, Guo L J. . Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews, 2010, 110(11): 6503–6570

[18]

Singh A K, Montoya J H, Gregoire J M. . Robust and synthesizable photocatalysts for CO2 reduction: A data-driven materials discovery. Nature Communications, 2019, 10(1): 443

[19]

Ran J R, Jaroniec M, Qiao S Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Advanced Materials, 2018, 30(7): 1704649

[20]

Schreier M, Héroguel F, Steier L. . Solar conversion of CO2 to CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nature Energy, 2017, 2(7): 17087

[21]

Zhu X L, Lin Y X, San Martin J. . Lead halide perovskites for photocatalytic organic synthesis. Nature Communications, 2019, 10(1): 2843

[22]

Ketavath R, Mohan L, Sumukam R R. . Can perovskites be efficient photocatalysts in organic transformations? Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(23): 12317–12333

[23]

Wang J, Xia T, Wang L. . Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution. Angewandte Chemie International Edition, 2018, 57(50): 16447–16451

[24]

Cui X F, Wang J, Liu B. . Turning Au nanoclusters catalytically active for visible-light-driven CO2 reduction through bridging ligands. Journal of the American Chemical Society, 2018, 140(48): 16514–16520

[25]

Li H J, Zhou Y, Tu W G. . State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Advanced Functional Materials, 2015, 25(7): 998–1013

[26]

Wang Q, Domen K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chemical Reviews, 2020, 120(2): 919–985

[27]

Wu H L, Li X B, Tung C H. . Semiconductor quantum dots: An emerging candidate for CO2 photoreduction. Advanced Materials, 2019, 31(36): 1900709

[28]

Xie S J, Zhang Q H, Liu G D. . Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chemical Communications, 2016, 52(1): 35–59

[29]

DuBose J T, Kamat P V. Efficacy of perovskite photocatalysis: Challenges to overcome. ACS Energy Letters, 2022, 7(6): 1994–2011

[30]

Li K, Peng B S, Peng T Y. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catalysis, 2016, 6(11): 7485–7527

[31]

Zhang L, Miao J H, Li J F. . Halide perovskite materials for energy storage applications. Advanced Functional Materials, 2020, 30(40): 2003653

[32]

Chen P F, Ong W J, Shi Z H. . Pb-based halide perovskites: Recent advances in photo(electro)catalytic applications and looking beyond. Advanced Functional Materials, 2020, 30(30): 1909667

[33]

Huang H W, Pradhan B, Hofkens J. . Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance. ACS Energy Letters, 2020, 5(4): 1107–1123

[34]

Han C, Zhu X L, Martin J S. . Recent progress in engineering metal halide perovskites for efficient visible-light-driven photocatalysis. ChemSusChem, 2020, 13(16): 4005–4025

[35]

Ma S Q, Chen D M, Zhong Y. . Oxygen vacancy simultaneously inducing peroxymonosulfate activation and photocatalytic reaction for highly efficient ciprofloxacin degradation. Chemical Engineering Journal, 2023, 467: 143385

[36]

Purohit S, Yadav K L, Satapathi S. Metal halide perovskite heterojunction for photocatalytic hydrogen generation: Progress and future opportunities. Advanced Materials Interfaces, 2022, 9(15): 2200058

[37]

Das R, Patra A, Dutta S K. . Facets-directed epitaxially grown lead halide perovskite-sulfobromide nanocrystal heterostructures and their improved photocatalytic activity. Journal of the American Chemical Society, 2022, 144(40): 18629–18641

[38]

Li X X, Zheng S T. Three-dimensional metal-halide open frameworks. Coordination Chemistry Reviews, 2021, 430: 213663

[39]

Kumar A, Krishnan V. Vacancy engineering in semiconductor photocatalysts: Implications in hydrogen evolution and nitrogen fixation applications. Advanced Functional Materials, 2021, 31(28): 2009807

[40]

Shi E Z, Gao Y, Finkenauer B P. . Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews, 2018, 47(16): 6046–6072

[41]

Pang H R, Du S J, Deng J P. . Enhancing carrier transport in 2D/3D perovskite heterostructures through organic cation fluorination. Small, 2024, 20(34): 2401797

[42]

San Martin J, Dang N, Raulerson E. . Perovskite photocatalytic CO2 reduction or photoredox organic transformation. Angewandte Chemie International Edition, 2022, 61(39): e202205572

[43]

Liu G N, Gao C C, Qi F Z. . Band edge modulation via a hydrogen-bond-free cation in hybrid bismuth iodine for overall photocatalytic CO2 reduction. Inorganic Chemistry Frontiers, 2024, 11(14): 4364–4373

[44]

Fang S Y, Rahaman M, Bharti J. . Photocatalytic CO2 reduction. Nature Reviews. Methods Primers, 2023, 3(1): 61

[45]

Yin J L, Song X L, Chen S. . Modulating inorganic dimensionality of ultrastable lead halide coordination polymers for photocatalytic CO2 reduction to ethanol. Angewandte Chemie International Edition, 2024, 63(16): e202316080

[46]

Walter M G, Warren E L, McKone J R. . Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473

[47]

Zou H Y, Dong C W, Li S Y. . Effect of surface trap states on photocatalytic activity of semiconductor quantum dots. Journal of Physical Chemistry C, 2018, 122(17): 9312–9319

[48]

Huang H, Bodnarchuk M I, Kershaw S V. . Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Letters, 2017, 2(9): 2071–2083

[49]

Kovalenko M V, Protesescu L, Bodnarchuk M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 2017, 358(6364): 745–750

[50]

Brandt R E, Poindexter J R, Gorai P. . Searching for “Defect-Tolerant” photovoltaic materials: Combined theoretical and experimental screening. Chemistry of Materials, 2017, 29(11): 4667–4674

[51]

Zhong F Y, He Y, Sun Y J. . Metal-doping of halide perovskite nanocrystals for energy and environmental photocatalysis: Challenges and prospects. Journal of Materials Chemistry A, 2022, 10(43): 22915–22928

[52]

Pi J C, Jia X F, Long Z W. . Surface and defect engineering coupling of halide double perovskite Cs2NaBiCl6 for efficient CO2 photoreduction. Advanced Energy Materials, 2022, 12(43): 2202074

[53]

Min H, Lee D Y, Kim J. . Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 2021, 598(7881): 444–450

[54]

Kim D, Jung H J, Park I J. . Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science, 2020, 368(6487): 155–160

[55]

Zhang G, Liu G, Wang L Z. . Inorganic perovskite photocatalysts for solar energy utilization. Chemical Society Reviews, 2016, 45(21): 5951–5984

[56]

Wu D F, Zhao X S, Huang Y Y. . Lead-free perovskite Cs2AgBiX6 nanocrystals with a band gap funnel structure for photocatalytic CO2 reduction under visible light. Chemistry of Materials, 2021, 33(13): 4971–4976

[57]

Spanopoulos I, Hadar I, Ke W J. . Water-stable 1D hybrid tin(II) iodide emits broad light with 36% photoluminescence quantum efficiency. Journal of the American Chemical Society, 2020, 142(19): 9028–9038

[58]

Zhang H F, Yang Z, Yu W. . A sandwich-like organolead halide perovskite photocathode for efficient and durable photoelectrochemical hydrogen evolution in water. Advanced Energy Materials, 2018, 8(22): 1800795

[59]

Simenas M, Balciunas S, Wilson J N. . Suppression of phase transitions and glass phase signatures in mixed cation halide perovskites. Nature Communications, 2020, 11(1): 5103

[60]

Shamsi J, Urban A S, Imran M. . Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chemical Reviews, 2019, 119(5): 3296–3348

[61]

Yin J L, Li D Y, Sun C. . Solar-driven conversion of CO2 to C2 products by the 3d transition metal intercalates of layered lead iodides. Advanced Materials, 2024, 36(30): 2403651

[62]

Wang C, Xiao J W, Yan Z G. . Colloidal synthesis and phase transformation of all-inorganic bismuth halide perovskite nanoplates. Nano Research, 2023, 16(1): 1703–1711

[63]

Kovalenko M V, Manna L, Cabot A. . Prospects of nanoscience with nanocrystals. ACS Nano, 2015, 9(2): 1012–1057

[64]

Zhang C X, Chen J Y, Wang S. . Metal halide perovskite nanorods: shape matters. Advanced Materials, 2020, 32(46): 2002736

[65]

Rao M K, Selvakumar M, Mahesha M G. . Tackling toxicity and stability using eco-friendly metal-halide ion substituted perovskite nanocrystals for advanced display color conversion. Chemical Engineering Journal, 2024, 494: 152918

[66]

Chen Z Y, Dhakal T P. Room temperature synthesis of lead-free FASnI3 perovskite nanocrystals with improved stability by SnF2 additive. Applied Physics Reviews, 2023, 10(1): 011404

[67]

Protesescu L, Yakunin S, Bodnarchuk M I. . Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015, 15(6): 3692–3696

[68]

Wong A B, Bekenstein Y, Kang J. . Strongly quantum confined colloidal cesium tin iodide perovskite nanoplates: Lessons for reducing defect density and improving stability. Nano Letters, 2018, 18(3): 2060–2066

[69]

Shamsi J, Rastogi P, Caligiuri V. . Bright-emitting perovskite films by large-scale synthesis and photoinduced solid-state transformation of CsPbBr3 nanoplatelets. ACS Nano, 2017, 11(10): 10206–10213

[70]

Wei S, Yang Y C, Kang X J. . Room - temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50–85% photoluminescence quantum yields. Chemical Communications, 2016, 52(45): 7265–7268

[71]

Wang K H, Wu L, Li L. . Large-scale synthesis of highly luminescent perovskite-related CsPb2Br5 nanoplatelets and their fast anion exchange. Angewandte Chemie International Edition, 2016, 55(29): 8328–8332

[72]

Feng Y M, Chen D M, Niu M. . Recent progress in metal halide perovskite-based photocatalysts: Physicochemical properties, synthetic strategies, and solar-driven applications. Journal of Materials Chemistry A, 2023, 11(41): 22058–22086

[73]

Xiao M D, Huang F Z, Huang W C. . A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angewandte Chemie International Edition, 2014, 53(37): 9898–9903

[74]

Jeon N J, Noh J H, Kim Y C. . Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 2014, 13(9): 897–903

[75]

Petrus M L, Schlipf J, Li C. . Capturing the sun: a review of the challenges and perspectives of perovskite solar cells. Advanced Energy Materials, 2017, 7(16): 1700264

[76]

Huang H W, Yuan H F, Janssen K P F. . Efficient and selective photocatalytic oxidation of benzylic alcohols with hybrid organic–inorganic perovskite materials. ACS Energy Letters, 2018, 3(4): 755–759

[77]

Wu D F, Zhou J E, Kang W. . Ultrastable lead-free CsAgCl2 perovskite microcrystals for photocatalytic CO2 reduction. Journal of Physical Chemistry Letters, 2021, 12(21): 5110–5114

[78]

Wu Y Q, Wang P, Zhu X L. . Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Advanced Materials, 2018, 30(7): 1704342

[79]

Zhao H B, Liao J F, Teng Y. . Inorganic copper-based halide perovskite for efficient photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2022, 14(38): 43354–43361

[80]

Wu D F, Wang C, Huo B J. . Photo- and electrocatalytic CO2 reduction based on stable lead-free perovskite Cs2PdBr6. Energy & Environmental Materials, 2023, 6(5): e12411

[81]

Wang J, Shi Y Y, Wang Y H. . Rational design of metal halide perovskite nanocrystals for photocatalytic CO2 reduction: Recent advances, challenges, and prospects. ACS Energy Letters, 2022, 7(6): 2043–2059

[82]

Li Q L, Song T, Zhang Y P. . Boosting photocatalytic activity and stability of lead-free Cs3Bi2Br9 perovskite nanocrystals via in situ growth on monolayer 2D Ti3C2Tx MXene for C–H bond oxidation. ACS Applied Materials & Interfaces, 2021, 13(23): 27323–27333

[83]

Zhang W N, Zhao Q G, Wang X H. . Lead-free organic–inorganic hybrid perovskite heterojunction composites for photocatalytic applications. Catalysis Science & Technology, 2017, 7(13): 2753–2762

[84]

Gao G, Xi Q Y, Zhou H. . Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale, 2017, 9(33): 12032–12038

[85]

Cardenas-Morcoso D, Gualdrón-Reyes A F, Ferreira Vitoreti A B. . Photocatalytic and photoelectrochemical degradation of organic compounds with all-inorganic metal halide perovskite quantum dots. Journal of Physical Chemistry Letters, 2019, 10(3): 630–636

[86]

Chouhan A S, Jasti N P, Hadke S. . Large grained and high charge carrier lifetime CH3NH3PbI3 thin-films:Implications for perovskite solar cells. Current Applied Physics, 2017, 17(10): 1335–1340

[87]

Zhang F Y, Yang B, Li Y J. . Extra long electron–hole diffusion lengths in CH3NH3PbI3−xClx perovskite single crystals. Journal of Materials Chemistry C, 2017, 5(33): 8431–8435

[88]

Xu Y F, Yang M Z, Chen B X. . A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. Journal of the American Chemical Society, 2017, 139(16): 5660–5663

[89]

Wei Y, Cheng Z Y, Lin J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chemical Society Reviews, 2019, 48(1): 310–350

[90]

Park Y H, Murali G, Modigunta J K R. . Recent advances in quantum dots for photocatalytic CO2 reduction: A mini-review. Frontiers in Chemistry, 2021, 9: 734108

[91]

Shyamal S, Pradhan N. Halide perovskite nanocrystal photocatalysts for CO2 reduction: Successes and challenges. Journal of Physical Chemistry Letters, 2020, 11(16): 6921–6934

[92]

Hou J G, Cao S Y, Wu Y Z. . Inorganic colloidal perovskite quantum dots for robust solar CO2 reduction. Chemistry – A European Journal, 2017, 23(40): 9481–9485

[93]

Chen Z J, Hu Y G, Wang J. . Boosting photocatalytic CO2 reduction on CsPbBr3 perovskite nanocrystals by immobilizing metal complexes. Chemistry of Materials, 2020, 32(4): 1517–1525

[94]

Bhosale S S, Kharade A K, Jokar E. . Mechanism of photocatalytic CO2 reduction by bismuth-based perovskite nanocrystals at the gas–solid interface. Journal of the American Chemical Society, 2019, 141(51): 20434–20442

[95]

Lu C, Itanze D S, Aragon A G. . Synthesis of lead-free Cs3Sb2Br9 perovskite alternative nanocrystals with enhanced photocatalytic CO2 reduction activity. Nanoscale, 2020, 12(5): 2987–2991

[96]

Zhou L, Xu Y F, Chen B X. . Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals. Small, 2018, 14(11): 1703762

[97]

Zhou C K, Lin H R, Lee S J. . Organic–inorganic metal halide hybrids beyond perovskites. Materials Research Letters, 2018, 6(10): 552–569

[98]

Connor B A, Leppert L, Smith M D. . Layered halide double perovskites: dimensional reduction of Cs2AgBiBr6. Journal of the American Chemical Society, 2018, 140(15): 5235–5240

[99]

Liu Z Y, Yang H J, Wang J Y. . Synthesis of lead-free Cs2AgBiX6 (X = Cl, Br, I) double perovskite nanoplatelets and their application in CO2 photocatalytic reduction. Nano Letters, 2021, 21(4): 1620–1627

[100]

Zhao X G, Yang J H, Fu Y H. . Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. Journal of the American Chemical Society, 2017, 139(7): 2630–2638

[101]

YanG, SunX D, ZhangY, et al. Metal-free 2D/2D van der Waals heterojunction based on covalent organic frameworks for highly efficient solar energy catalysis. Nano-Micro Letters, 2023, 15(1): 132

[102]

Zhang Y, Zhang G P, Di J. . Bismuth-based materials for CO2 photoreduction. Current Opinion in Green and Sustainable Chemistry, 2023, 39: 100718

[103]

Wang Y X, Wang H, Sheng J P. . Self-templated fabrication of porous Bi5O7I nanosheets for enhanced visible light CO2 photoreduction. Surfaces and Interfaces, 2023, 43: 103551

[104]

Li Q, Li Y L, Li B. . Construction of adjustable dominant {314} facet of Bi5O7I and facet-oxygen vacancy coupling dependent adsorption and photocatalytic activity. Applied Catalysis B: Environmental, 2021, 289: 120041

[105]

Zhang Y, Guo F Y, Di J. . Strain-induced surface interface dual polarization constructs PML-Cu/Bi12O17Br2 high-density active sites for CO2 photoreduction. Nano-Micro Letters, 2024, 16(1): 90

[106]

Han N, Zhang W, Guo W. . Designing oxide catalysts for oxygen electrocatalysis: Insights from mechanism to application. Nano-Micro Letters, 2023, 15(1): 185

[107]

Xu F Y, Meng K, Cheng B. . Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nature Communications, 2020, 11(1): 4613

[108]

Chen F, Huang H W, Guo L. . The role of polarization in photocatalysis. Angewandte Chemie International Edition, 2019, 58(30): 10061–10073

[109]

Di J, Jiang W, Liu Z. Symmetry breaking for semiconductor photocatalysis. Trends in Chemistry, 2022, 4(11): 1045–1055

[110]

Guan M L, Lu N, Zhang X. . Engineering of oxygen vacancy and bismuth cluster assisted ultrathin Bi12O17Cl2 nanosheets with efficient and selective photoreduction of CO2 to CO. Carbon Energy, 2024, 6(4): e420

[111]

Zhao L L, Hou H L, Wang S. . Engineering Co single atoms in ultrathin BiOCl nanosheets for boosted CO2 photoreduction. Advanced Functional Materials, 2024, 2416346

[112]

Nedelcu G, Protesescu L, Yakunin S. . Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Letters, 2015, 15(8): 5635–5640

[113]

Swarnkar A, Marshall A R, Sanehira E M. . Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high - efficiency photovoltaics. Science, 2016, 354(6308): 92–95

[114]

Li X M, Yu D J, Cao F. . Healing all-inorganic perovskite films via recyclable dissolution–recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability. Advanced Functional Materials, 2016, 26(32): 5903–5912

[115]

Zhang X Y, Sun C, Zhang Y. . Bright perovskite nanocrystal films for efficient light-emitting devices. Journal of Physical Chemistry Letters, 2016, 7(22): 4602–4610

[116]

Yakunin S, Protesescu L, Krieg F. . Erratum: Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Communications, 2015, 6(1): 8515

[117]

Wu L Y, Mu Y F, Guo X X. . Encapsulating perovskite quantum dots in iron-based metal–organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angewandte Chemie International Edition, 2019, 58(28): 9491–9495

[118]

Protesescu L, Yakunin S, Bodnarchuk M I. . Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence. Journal of the American Chemical Society, 2016, 138(43): 14202–14205

[119]

Que M D, Zhao Y, Pan L K. . Colloidal formamidinium lead bromide quantum dots for photocatalytic CO2 reduction. Materials Letters, 2021, 282: 128695

[120]

McCall K M, Stoumpos C C, Kostina S S. . Strong electron–phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M=Bi, Sb). Chemistry of Materials, 2017, 29(9): 4129–4145

[121]

Xiao M, Zhang Y R, You J K. . Addressing the stability challenge of metal halide perovskite based photocatalysts for solar fuel production. Journal of Physics: Energy, 2022, 4(4): 042005

[122]

Du X Z, Qiu R Z, Zou T Y. . Enhanced uniformity and stability of Pb–Sn perovskite solar cells via Me4NBr passivation. Advanced Materials Interfaces, 2019, 6(14): 1900413

[123]

Parida B, Jin I S, Jung J W. Dual passivation of SnO2 by tetramethylammonium chloride for high-performance CsPbI2Br -based inorganic perovskite solar cells. Chemistry of Materials, 2021, 33(15): 5850–5858

[124]

Poli I, Eslava S, Cameron P. Tetrabutylammonium cations for moisture-resistant and semitransparent perovskite solar cells. Journal of Materials Chemistry. A, 2017, 5(42): 22325–22333

[125]

Xu Z Y, Chen R H, Wu Y Z. . Br-containing alkyl ammonium salt-enabled scalable fabrication of high-quality perovskite films for efficient and stable perovskite modules. Journal of Materials Chemistry. A, 2019, 7(47): 26849–26857

[126]

Zhao H, Kordas K, Ojala S. Recent advances in synthesis of water-stable metal halide perovskites and photocatalytic applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(42): 22656–22687

[127]

Chen X F, Peng C D, Dan W Y. . Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor. Nature Communications, 2022, 13(1): 4592

[128]

Sun D R, Fu Y H, Liu W J. . Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal–organic frameworks. Chemistry – A European Journal, 2013, 19(42): 14279–14285

[129]

Dao X Y, Guo J H, Wei Y P. . Solvent-free photoreduction of CO2 to CO catalyzed by Fe-MOFs with superior selectivity. Inorganic Chemistry, 2019, 58(13): 8517–8524

[130]

Song X L, Wei G F, Sun J. . Overall photocatalytic water splitting by an organolead iodide crystalline material. Nature Catalysis, 2020, 3(12): 1027–1033

[131]

Gao Y J, Zhang L, Gu Y M. . Formation of a mixed-valence Cu(i)/Cu(ii) metal–organic framework with the full light spectrum and high selectivity of CO2 photoreduction into CH4. Chemical Science, 2020, 11(37): 10143–10148

[132]

Fei H H, Sampson M D, Lee Y. . Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal–organic framework. Inorganic Chemistry, 2015, 54(14): 6821–6828

[133]

Bresolin B M, Park Y, Bahnemann D W. Recent progresses on metal halide perovskite-based material as potential photocatalyst. Catalysts, 2020, 10(6): 709

[134]

Li J M, Cao H L, Jiao W B. . Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nature Communications, 2020, 11(1): 310

[135]

Chu L, Ahmad W, Liu W. . Lead-free halide double perovskite materials: A new superstar towards green and stable optoelectronic applications. Nano-Micro Letters, 2019, 11(1): 16

[136]

Xie B K, Chen D Y, Li N J. . Lead-free Cs3Bi2Br9 perovskite in-situ growth on 3D flower-like g-C3N4 microspheres to improve photocatalytic performance. Chemical Engineering Journal, 2023, 452: 139662

[137]

Chakraborty S, Xie W, Mathews N. . Rational design: A high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites. ACS Energy Letters, 2017, 2(4): 837–845

[138]

Kamat P V, Bisquert J, Buriak J. Lead-free perovskite solar cells. ACS Energy Letters, 2017, 2(4): 904–905

[139]

Feng Y M, Chen D M, Zhong Y. . A lead-free 0D/2D Cs3Bi2Br9/Bi2WO6 S-scheme heterojunction for efficient photoreduction of CO2. ACS Applied Materials & Interfaces, 2023, 15(7): 9221–9230

[140]

Li N Y, Chen X J, Wang J. . ZnSe nanorods–CsSnCl3 perovskite heterojunction composite for photocatalytic CO2 reduction. ACS Nano, 2022, 16(2): 3332–3340

[141]

Wang X D, Huang Y H, Liao J F. . In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. Journal of the American Chemical Society, 2019, 141(34): 13434–13441

[142]

Zhang Z Z, Yang Y Y, Wang Y Y. . Revealing the A-site effect of lead-free A3Sb2Br9 perovskite in photocatalytic C(sp3)–H bond activation. Angewandte Chemie International Edition, 2020, 59(41): 18136–18139

[143]

Sheng J, He Y, Huang M. . Frustrated Lewis pair sites boosting CO2 photoreduction on Cs2CuBr4 perovskite quantum dots. ACS Catalysis, 2022, 12(5): 2915–2926

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (4813KB)

10399

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/