Visualizing unleashed latent heat of liquid metal for soft intelligence

Jianbo Tang, Bo Yuan, Hongzhang Wang, Jing Liu

PDF(2323 KB)
PDF(2323 KB)
Front. Energy ›› 2024, Vol. 18 ›› Issue (5) : 545-549. DOI: 10.1007/s11708-024-0951-7
NEWS & HIGHLIGHTS

Visualizing unleashed latent heat of liquid metal for soft intelligence

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Jianbo Tang, Bo Yuan, Hongzhang Wang, Jing Liu. Visualizing unleashed latent heat of liquid metal for soft intelligence. Front. Energy, 2024, 18(5): 545‒549 https://doi.org/10.1007/s11708-024-0951-7

References

[1]
Daeneke T, Khoshmanesh K, Mahmood N. . Liquid metals: Fundamentals and applications in chemistry. Chemical Society Reviews, 2018, 47(11): 4073–4111
CrossRef Google scholar
[2]
Ma Z, Huang Q, Xu Q. . Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nature Materials, 2021, 20(6): 859–868
CrossRef Google scholar
[3]
Deng Y, Liu J. A liquid metal cooling system for the thermal management of high power leds. International Communications in Heat and Mass Transfer, 2010, 37(7): 788–791
CrossRef Google scholar
[4]
Wang H, Peng Y, Peng H. . Fluidic phase-change materials with continuous latent heat from theoretically tunable ternary metals for efficient thermal management. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(31): e2200223119
CrossRef Google scholar
[5]
Yun G, Tang S Y, Sun S. . Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nature Communications, 2019, 10(1): 1300
CrossRef Google scholar
[6]
Johnston L, Yang J, Han J. . Intermetallic wetting enabled high resolution liquid metal patterning for 3D and flexible electronics. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2022, 10(3): 921–931
CrossRef Google scholar
[7]
Wang H, Yao Y, He Z. . A highly stretchable liquid metal polymer as reversible transitional insulator and conductor. Advanced Materials, 2019, 31(23): 1901337
CrossRef Google scholar
[8]
Markvicka E J, Bartlett M D, Huang X. . An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nature Materials, 2018, 17(7): 618–624
CrossRef Google scholar
[9]
Chang B S, Tutika R, Cutinho J. . Mechanically triggered composite stiffness tuning through thermodynamic relaxation (ST3R). Materials Horizons, 2018, 5(3): 416–422
CrossRef Google scholar
[10]
Abbasi R, Tang J, Baharfar M. . Induction heating for the removal of liquid metal-based implant mimics: A proof-of-concept. Applied Materials Today, 2022, 27: 101459
CrossRef Google scholar
[11]
Wang H, Yuan B, Zhu X. . Multi-stimulus perception and visualization by an intelligent liquid metal elastomer architecture. Science Advances, 2024, 10(21): eadp5215
CrossRef Google scholar
[12]
Sitti M. Physical intelligence as a new paradigm. Extreme Mechanics Letters, 2021, 46: 101340
CrossRef Google scholar

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 52301193 and 91748206), the China Postdoctoral Science Foundation (No. 2021M691707), and the Australian Research Council Discovery Early Career Researcher Award (No. DE220100816).

Competing Interests

The authors declare that they have no competing interest.

RIGHTS & PERMISSIONS

2024 Higher Education Press 2024
AI Summary AI Mindmap
PDF(2323 KB)

Accesses

Citations

Detail

Sections
Recommended

/