A hot future for cool materials

Xavier MOYA , Neil D. MATHUR

Front. Energy ›› 2023, Vol. 17 ›› Issue (4) : 447 -449.

PDF (400KB)
Front. Energy ›› 2023, Vol. 17 ›› Issue (4) : 447 -449. DOI: 10.1007/s11708-022-0854-4
NEWS & HIGHLIGHTS
NEWS & HIGHLIGHTS

A hot future for cool materials

Author information +
History +
PDF (400KB)

Abstract

The widespread need to pump heat necessitates improvements that will increase energy efficiency and, more generally, reduce environmental impact. As discussed at the recent Calorics 2022 Conference, heat-pump devices based on caloric materials offer an intriguing alternative to gas combustion and vapor compression.

Graphical abstract

Keywords

magnetocaloric / electrocaloric / mechanocaloric / elastocaloric / barocaloric

Cite this article

Download citation ▾
Xavier MOYA, Neil D. MATHUR. A hot future for cool materials. Front. Energy, 2023, 17(4): 447-449 DOI:10.1007/s11708-022-0854-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HenryRoyce Institute. Materials for the Energy Transition roadmap: Caloric Energy Conversion Materials. 2020, available at the website of the Henry Royce Institute

[2]

McLinden M O, Seeton C J, Pearson A. New refrigerants and system configurations for vapor-compression refrigeration. Science, 2020, 370(6518): 791–796

[3]

Gschneidner K A Jr, Pecharsky V K, Tsokol A O. Recent developments in magnetocaloric materials. Reports on Progress in Physics, 2005, 68(6): 1479–1539

[4]

Yu B, Liu M, Egolf P W. . A review of magnetic refrigerator and heat pump prototypes built before the year 2010. International Journal of Refrigeration, 2010, 33(6): 1029–1060

[5]

Gutfleisch O, Willard M A, Brück E. . Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Advanced Materials, 2011, 23(7): 821–842

[6]

Smith A, Bahl C R H, Bjørk R. . Materials challenges for high performance magnetocaloric refrigeration devices. Advanced Energy Materials, 2012, 2(11): 1288–1318

[7]

Fähler S, Rößler U K, Kastner O. . Caloric effects in ferroic materials: new concepts for cooling. Advanced Engineering Materials, 2012, 14(1–2): 10–19

[8]

Moya X, Kar-Narayan S, Mathur N D. Caloric materials near ferroic phase transitions. Nature Materials, 2014, 13(5): 439–450

[9]

Crossley S, Mathur N D, Moya X. New developments in caloric materials for cooling applications. AIP Advances, 2015, 5(6): 067153

[10]

Kitanovski A, Plaznik U, Tomc U. . Present and future caloric refrigeration and heat-pump technologies. International Journal of Refrigeration, 2015, 57: 288–298

[11]

Qian S, Geng Y, Wang Y. . A review of elastocaloric cooling: Materials, cycles and system integrations. International Journal of Refrigeration, 2016, 64: 1–19

[12]

Mañosa L, Planes A. Materials with giant mechanocaloric effects: cooling by strength. Advanced Materials, 2017, 29(11): 1603607

[13]

Franco V, Blázquez J S, Ipus J J. . Magnetocaloric effect: from materials research to refrigeration devices. Progress in Materials Science, 2018, 93: 112–232

[14]

Shi J, Han D, Li Z. . Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 2019, 3(5): 1200–1225

[15]

Moya X, Mathur N D. Caloric materials for cooling and heating. Science, 2020, 370(6518): 797–803

[16]

Stern-Taulats E, Castán T, Mañosa L. . Multicaloric materials and effects. MRS Bulletin, 2018, 43(4): 295–299

[17]

Hou H, Qian S, Takeuchi I. Materials, physics and systems for multicaloric cooling. Nature Reviews. Materials, 2022, 7(8): 633

RIGHTS & PERMISSIONS

Higher Education Press 2022

AI Summary AI Mindmap
PDF (400KB)

3374

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/