![](/develop/static/imgs/pdf.png)
Optimal operation of microgrid using hybrid differential evolution and harmony search algorithm
S. SURENDER REDDY, Jae Young PARK, Chan Mook JUNG
Optimal operation of microgrid using hybrid differential evolution and harmony search algorithm
This paper proposes the generation scheduling approach for a microgrid comprised of conventional generators, wind energy generators, solar photovoltaic (PV) systems, battery storage, and electric vehicles. The electrical vehicles (EVs) play two different roles: as load demands during charging, and as storage units to supply energy to remaining load demands in the MG when they are plugged into the microgrid (MG). Wind and solar PV powers are intermittent in nature; hence by including the battery storage and EVs, the MG becomes more stable. Here, the total cost objective is minimized considering the cost of conventional generators, wind generators, solar PV systems and EVs. The proposed optimal scheduling problem is solved using the hybrid differential evolution and harmony search (hybrid DE-HS) algorithm including the wind energy generators and solar PV system along with the battery storage and EVs. Moreover, it requires the least investment.
battery storage / electric vehicles (EVs) / microgrid (MG) / optimal scheduling / solar photovoltaic (PV) system / wind energy conversion system
[1] |
Olivares D E, Canizares C A, Kazerani M. A centralized optimal energy management system for microgrids. In: IEEE Power & Energy Society General Meeting. San Diego, USA, 2011, 1–6
|
[2] |
Mohamed F A, Koivo H N. System modeling and online optimal management of mi-crogrid using mesh adaptive direct search. International Journal of Electrical Power & Energy Systems, 2010, 32(5): 398–407
CrossRef
Google scholar
|
[3] |
Mohamed F A, Koivo H N. Online management of microgrid with battery storage using multi-objective optimization. In: Proceedings of International Conference on Power Engineering, Energy and Electrical Drives. Setubal, Portugal, 2007, 231–236
|
[4] |
Meiqin M, Shujuan S, Chang L. Economic analysis of the microgrid with multi-energy and electric vehicles. In: Proceedings of 2011 IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE). Jeju, Republic of Korea, 2013, 2067–2072
|
[5] |
Heyde C O, Rudion K, Styezynski Z A, Ruhle O. Stochastic computation of power system security level. In: Proceedings of IEEE Power Tech. Lausanne, Switzerland, 2007
|
[6] |
Augustine N, Suresh S, Moghe P, Sheikh K. Economic dispatch for a microgrid considering renewable energy cost functions. In: IEEE PES Innovative Smart Grid Technologies. Washington DC, USA, 2012, 1–7
|
[7] |
Zakariazadeh A, Jadid S, Siano P. Smart microgrid energy and reserve scheduling with demand response using stochastic optimization. International Journal of Electrical Power & Energy Systems, 2014, 63: 523–533
CrossRef
Google scholar
|
[8] |
Wu H, Liu X, Ding M. Dynamic economic dispatch of a microgrid: mathematical models and solution algorithm. International Journal of Electrical Power & Energy Systems, 2014, 63: 336–346
CrossRef
Google scholar
|
[9] |
Morais H, Kádár P, Faria P, Vale Z A, Khodr H M. Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming. Renewable Energy, 2010, 35(1): 151–156
CrossRef
Google scholar
|
[10] |
Zhang Y, Giannakis G B. Efficient decentralized economic dispatch for microgrids with wind power integration. In: 2014 Sixth Annual IEEE Green Technologies Conference. Washington DC, USA, 2014, 7–12
|
[11] |
Carpinelli G, Mottola F, Proto D. Optimal scheduling of a microgrid with demand response resources. IET Generation, Transmission & Distribution, 2014, 8(12): 1891–1899
CrossRef
Google scholar
|
[12] |
Liu X P, Ding M, Han J H, Han P P. Dynamic economic dispatch for microgrids including battery energy storage. In: Proceedings of the 2nd International Symposium on Power Electronics for Distributed Generation Systems. Hefei, China, 2010, 914–917
|
[13] |
Meiqin M, Meihong J, Wei D, Chang L. Multi-objective economic dispatch model for a microgrid considering reliability. In: Proceedings of the 2nd International Symposium on Power Electronics for Distributed Generation Systems. Hefei, China, 2010, 993–998
|
[14] |
Nunna H S V S K, Ashok S. Optimal management of microgrids. In: Proceedings of IEEE Innovative Technologies for an Efficient & Reliable Electricity Supply. Waltham, UK, 2010, 448–453
|
[15] |
Wang M Q, Gooi H B. Spinning reserve estimation in microgrids. IEEE Transactions on Power Systems, 2011, 26(3): 1164–1174
CrossRef
Google scholar
|
[16] |
Chen C, Duan S. Microgrid economic operation considering plug-in hybrid electric vehicles integration. Journal of Modern Power Systems and Clean Energy, 2015, 3(2): 221–231
CrossRef
Google scholar
|
[17] |
Gu W, Wu Z, Yuan X. Microgrid economic optimal operation of the combined heat and power system with renewable energy. In: IEEE Power and Energy Society General Meeting. Minneapolis, USA, 2010, 1–6
|
[18] |
Liang H, Zhuang W. Stochastic modeling and optimization in a microgrid: a survey. Energies, 2014, 7(4): 2027–2050
CrossRef
Google scholar
|
[19] |
Reddy S S, Momoh J A. Realistic and transparent optimum scheduling strategy for hybrid power system. Transactions on Smart Grid, 2015, 6(6): 3114–3125
CrossRef
Google scholar
|
[20] |
Honarmand M, Zakariazadeh A, Jadid S. Self-scheduling of electric vehicles in an intelligent parking lot using stochastic optimization. Journal of the Franklin Institute, 2015, 352(2): 449–467
CrossRef
Google scholar
|
[21] |
Lu B, Shahidehpour M. Short-term scheduling of battery in a grid-connected PV/battery system. IEEE Transactions on Power Systems, 2005, 20(2): 1053–1061
CrossRef
Google scholar
|
[22] |
Liu X, Xu W. Minimum emission dispatch constrained by stochastic wind power availability and cost. IEEE Transactions on Power Systems, 2010, 25(3): 1705–1713
CrossRef
Google scholar
|
[23] |
Liu X, Xu W. Economic load dispatch constrained by wind power availability: a here-and-now approach. IEEE Transactions on Sustainable Energy, 2010, 1(1): 2–9
CrossRef
Google scholar
|
[24] |
Hetzer J, Yu D C, Bhattarai K. An economic dispatch model incorporating wind power. Transactions on Energy Conversion., 2008, 23(2): 603–611
CrossRef
Google scholar
|
[25] |
Reddy S S, Bijwe P R. Real time economic dispatch considering renewable energy resources. Renewable Energy, 2015, 83: 1215–1226
CrossRef
Google scholar
|
[26] |
Ela A A A E, Abido M A, Spea S R. Optimal power flow using differential evolution algorithm. Electric Power Systems Research, 2010, 80(7): 878–885
CrossRef
Google scholar
|
[27] |
Sivasubramani S, Swarup K S. Multi-objective harmony search algorithm for optimal power flow problem. International Journal of Electrical Power & Energy Systems, 2011, 33(3): 745–752
CrossRef
Google scholar
|
[28] |
Gao X Z, Wang X, Ovaska S J, Zenger K. A hybrid optimization method based on differential evolution and harmony search. Journal of Computational Intelligence & Applications, 2014, 13(1): 1–23
|
/
〈 |
|
〉 |