Prediction of performance, combustion and emission characteristics of diesel-thermal cracked cashew nut shell liquid blends using artificial neural network

Arunachalam VELMURUGAN, Marimuthu LOGANATHAN, E. James GUNASEKARAN

PDF(1889 KB)
PDF(1889 KB)
Front. Energy ›› 2016, Vol. 10 ›› Issue (1) : 114-124. DOI: 10.1007/s11708-016-0394-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Prediction of performance, combustion and emission characteristics of diesel-thermal cracked cashew nut shell liquid blends using artificial neural network

Author information +
History +

Abstract

This paper explores the use of artificial neural networks (ANN) to predict performance, combustion and emissions of a single cylinder, four stroke stationary, diesel engine operated by thermal cracked cashew nut shell liquid (TC-CNSL) as the biodiesel blended with diesel. The tests were performed at three different injection timings (21°, 23°, 25°CA bTDC) by changing the thickness of the advance shim. The ANN was used to predict eight different engine-output responses, namely brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), exhaust gas temperature (EGT), carbon monoxide (CO), oxide of nitrogen (NOx), hydrocarbon (HC), maximum pressure (Pmax) and heat release rate (HRR). Four pertinent engine operating parameters, i.e., injection timing (IT), injection pressure (IP), blend percentage and pecentage load were used as the input parameters for this modeling work. The ANN results show that there is a good correlation between the ANN predicted values and the experimental values for various engine performances, combustion parameters and exhaust emission characteristics. The mean square error value (MSE) is 0.005621 and the regression value of R2 is 0.99316 for training, 0.98812 for validation, 0.9841 for testing while the overall value is 0.99173. Thus the developed ANN model is fairly powerful for predicting the performance, combustion and exhaust emissions of internal combustion engines.

Keywords

cashew nut shell liquid (CNSL) / artificial neural networks (ANN) / thermal cracking / mean square error (MSE)

Cite this article

Download citation ▾
Arunachalam VELMURUGAN, Marimuthu LOGANATHAN, E. James GUNASEKARAN. Prediction of performance, combustion and emission characteristics of diesel-thermal cracked cashew nut shell liquid blends using artificial neural network. Front. Energy, 2016, 10(1): 114‒124 https://doi.org/10.1007/s11708-016-0394-x

References

[1]
Vedharaj S, Vallinayagam R, Yang W M, Chou S K, Chua K J E, Lee P S. Performance emission and economic analysis of preheated CNSL biodiesel as an alternate fuel for a diesel engine. International Journal of Green Energy, 2015, 12(4): 359–367
CrossRef Google scholar
[2]
Vedharaj S, Vallinayagam R, Yang W M, Chou S K, Chua K J E, Lee P S. Experimental and finite element analysis of a coated diesel engine fuelled by cashew nut shell liquid biodiesel. Experimental Thermal and Fluid Science, 2014, 53: 259–268
CrossRef Google scholar
[3]
Vallinayagam R, Vedharaj S, Yang W M, Saravanan C G, Lee P S, Chua K J E, Chou S K. Impact of ignition promoting additives on the characteristics of a diesel engine powered by pine oil-diesel blend. Fuel, 2014, 117: 278–285
CrossRef Google scholar
[4]
Shivakumar,  Srinivasa Pai P, Shrinivasa Rao B R. Artificial neural network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings. Applied Energy, 2011, 88(7): 2344–2354nbsp;
CrossRef Google scholar
[5]
Çay Y, Korkmaz I, Çiçek A, Kara F. Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network. Energy, 2013, 50: 177–186nbsp;
CrossRef Google scholar
[6]
Mohamed Ismail H, Ng H K, Queck C W, Gan S. Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends. Applied Energy, 2012, 92: 769–777
CrossRef Google scholar
[7]
Betiku E, Omilakin O R, Ajala S O, Okeleye A A, Taiwo A E, Solomon B O. Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: a case of non-edible neem (Azadirachta indica) seed oil biodiesel synthesis. Energy, 2014, 72: 266–273
CrossRef Google scholar
[8]
Arumugam S, Sriram G, Shankara Subramanian P R. Application of artificial to predict the performance and exhaust emissions of diesel engine using rapeseed oil methyl ester. Procedia Engineering, 2012, 38: 853–860 
CrossRef Google scholar
[9]
Ghobadian B, Rahimi H, Nikbakht A M, Najafi G, Yusaf T F. Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network. Renewable Energy, 2009, 34(4): 976–982
CrossRef Google scholar
[10]
Moradi G R, Dehghani S, Khosravian F, Arjmandzadeh A. The optimized operational conditions for biodiesel production from soybean oiland application of artificial neural networks for estimation of the biodiesel yield. Renewable Energy, 2013, 50: 915–920
CrossRef Google scholar
[11]
Najafi G, Ghobadian B, Tavakoli T, Buttsworth D R, Yusaf T F, Faizollahnejad M. Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network. Applied Energy, 2009, 86(5): 630–639
CrossRef Google scholar
[12]
Çelikten I, Mutlu E, Solmaz H. Variation of performance and emission characteristics of a diesel engine fueled with diesel, rapeseed oil and hazelnut oil methyl ester blends. Renewable Energy, 2012, 48: 122–126 
CrossRef Google scholar
[13]
Parlak A, Islamoglu Y, Yasar H, Egrisogut A. Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine. Applied Thermal Engineering, 2006, 26(8-9): 824–828nbsp;
CrossRef Google scholar
[14]
Sayin C, Ertunc H M, Hosoz M, Kilicaslan I, Canakci M. Performance and exhaust emissions of a gasoline engine using artificial neural network. Applied Thermal Engineering, 2007, 27(1): 46–54
CrossRef Google scholar
[15]
Canakci M, Erdil A, Arcaklioglu E. Performance and exhaust emissions of a biodiesel engine. Applied Energy, 2006, 83(6): 594–605
CrossRef Google scholar
[16]
Çelik V, Arcaklioglu E. Performance maps of a diesel engine. Applied Energy, 2005, 81(3): 247–259 
CrossRef Google scholar
[17]
Can O, Celikten I, Usta N. Effects of ethanol addition on performance and emissions of a turbocharged indirect injection diesel engine running at different injection pressures. Energy Conversion and Management, 2004, 45(15-16): 2429–2440 
CrossRef Google scholar
[18]
Yusaf T F, Buttsworth D R, Saleh K H, Yousif B F. CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network. Applied Energy, 2010, 87(5): 1661–1669
CrossRef Google scholar
[19]
Oğuz H, Saritas I, Baydan H E. Prediction of diesel engine performance using biofuels with artificial neural network. Expert Systems with Applications, 2010, 37(9): 6579–6586nbsp;
CrossRef Google scholar
[20]
Kiani Deh Kiani M, Ghobadian B, Tavakoli T, Nikbakht A M, Najafi G. Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol-gasoline blends. Energy, 2010, 35(1): 65–69nbsp;
CrossRef Google scholar
[21]
Sayin C, Ertunc H M, Hosoz M, Kilicaslan I, Canakci M. Performance and exhaust emissions from a gasoline engine using artificial neural network. Applied Thermal Engineering, 2007, 27(1): 46–54
CrossRef Google scholar
[22]
Canakci M, Ozsezan A N, Arcaklioglu E, Erdil A. Predication of performance and exhaust emissions of a diesel engine fuelled with biodiesel produced from waste frying palm oil. Expert Systems with Applications, 2009, 86: 630–639
[23]
Velmurugan A, Loganathan M, James Gunasekran E. Experimental investigations on combustion, performance and emission characteristics of thermal cracked cashew nut shell liquid (TC-CNSL)-diesel blends in a diesel engine. Fuel, 2014, 132: 236–245 
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1889 KB)

Accesses

Citations

Detail

Sections
Recommended

/