Enhancement of grid-connected photovoltaic system using ANFIS-GA under different circumstances

Saeed VAFAEI, Alireza REZVANI, Majid GANDOMKAR, Maziar IZADBAKHSH

PDF(2019 KB)
PDF(2019 KB)
Front. Energy ›› 2015, Vol. 9 ›› Issue (3) : 322-334. DOI: 10.1007/s11708-015-0362-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Enhancement of grid-connected photovoltaic system using ANFIS-GA under different circumstances

Author information +
History +

Abstract

In recent years, many different techniques are applied in order to draw maximum power from photovoltaic (PV) modules for changing solar irradiance and temperature conditions. Generally, the output power generation of the PV system depends on the intermittent solar insolation, cell temperature, efficiency of the PV panel and its output voltage level. Consequently, it is essential to track the generated power of the PV system and utilize the collected solar energy optimally. The aim of this paper is to simulate and control a grid-connected PV source by using an adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA) controller. The data are optimized by GA and then, these optimum values are used in network training. The simulation results indicate that the ANFIS-GA controller can meet the need of load easily with less fluctuation around the maximum power point (MPP) and can increase the convergence speed to achieve the MPP rather than the conventional method. Moreover, to control both line voltage and current, a grid side P/Q controller has been applied. A dynamic modeling, control and simulation study of the PV system is performed with the Matlab/Simulink program.

Keywords

photovoltaic system / maximum power point (MPP) / adaptive neuro-fuzzy inference system (ANFIS) / genetic algorithm (GA)

Cite this article

Download citation ▾
Saeed VAFAEI, Alireza REZVANI, Majid GANDOMKAR, Maziar IZADBAKHSH. Enhancement of grid-connected photovoltaic system using ANFIS-GA under different circumstances. Front. Energy, 2015, 9(3): 322‒334 https://doi.org/10.1007/s11708-015-0362-x

References

[1]
Rezvani A, Gandomkar M, Izadbakhsh M, Ahmadi A. Environmental/economic scheduling of a micro-grid with renewable energy resources. Journal of Cleaner Production, 2015, 87: 216–226
CrossRef Google scholar
[2]
Izadbakhsh M, Gandomkar M, Rezvani A, Ahmadi A. Short-term resource scheduling of a renewable energy based micro grid. Renewable Energy, 2015, 75: 598–606
CrossRef Google scholar
[3]
Salas V, Olias E, Barrado A, Lazaro A. Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar Energy Materials and Solar Cells, 2006, 90(11): 1555–1578
CrossRef Google scholar
[4]
Femia N, Petrone G, Spagnuolo G, Vitelli M. Optimization of perturb and observer maximum power point tracking method. IEEE Transactions on Power Electronics, 2005, 20(4): 963–973
CrossRef Google scholar
[5]
Najet R, Belgacem B G, Othman H. Modeling and control of photovoltaic energy conversion connected to the grid. Frontiers in Energy, 2012, 6(1): 35–46
CrossRef Google scholar
[6]
Liu F, Duan S, Liu F, Liu B, Kang Y. A variable step size INC MPPT method for PV systems. IEEE Transactions on Industrial Electronics, 2008, 55(7): 2622–2628
CrossRef Google scholar
[7]
Altin N. Interval type-2 fuzzy logic controller based maximum power point tracking in photovoltaic systems. Advances in Electrical and Computer Engineering, 2013, 13(3): 65–70
CrossRef Google scholar
[8]
Bouchafaa F, Hamzaoui I, Hadjammar A. Fuzzy logic control for the tracking of maximum power point of a PV system. Energy Procedia, 2011, 6(1): 152–159
[9]
Veerachary M, Senjyu T, Uezato K. Neural-network-based maximum-power-point tracking of coupled inductor interleaved-boost-converter-supplied PV system using fuzzy controller. IEEE Transactions on Industrial Electronics, 2003, 50(4): 749–758
CrossRef Google scholar
[10]
Rai A K, Kaushika N D, Singh B, Agarwal N. Simulation model of ANN based maximum power point tracking controller for solar PV system. Solar Energy Materials and Solar Cells, 2011, 95(2): 773–778
CrossRef Google scholar
[11]
Chandrasekaran S, Amarkarthik A, Sivakumar K, Selvamuthukumaran D, Sidney S H. Experimental investigation and ANN modeling on improved performance of an innovative method of using heave response of a non-floating object for ocean wave energy conversion. Frontiers in Energy, 2013, 7(3): 279–287
CrossRef Google scholar
[12]
Liu F R, Duan S X, Liu F, Liu B Y, Kang Y. A variable step size INC MPPT method for PV systems. IEEE Transactions on Industrial Electronics, 2008, 55(7): 2622–2628
CrossRef Google scholar
[13]
Esram T, Chapman P L. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion, 2007, 22(2): 439–449
CrossRef Google scholar
[14]
Godoy Simões M, Franceschetti N N. Fuzzy optimisation based control of a solar array system. Electric Power Applications, 1999, 146(5): 552–558
CrossRef Google scholar
[15]
Huh D P, Ropp M E. Comparative study of maximum power point tracking algorithm using an experimental, programmable, maximum power point tracking test bed. In: Proceedings of 28th IEEE Photovoltaic Specialists Conference. Anchorage, USA, 2000, 1–5
[16]
Al-Amoudi A, Zhang L. Application of radial basis function networks for solar-array modeling and maximum power-point prediction. IEE Proceedings-Generation, Transmission and Distribution, 2000, 147(5): 310–316
CrossRef Google scholar
[17]
Zhang L, Bai Y F. Genetic algorithm-trained radial basis function neural networks for modeling photovoltaic panels. Engineering Applications of Artificial Intelligence, 2005, 18(7): 833–844
CrossRef Google scholar
[18]
Hiyama T, Kitabayashi K. Neural network based estimation of maximum power generation from PV Module using environment information. IEEE Transactions on Energy Conversion, 1997, 12(3): 241–247
CrossRef Google scholar
[19]
Aldobhani A M S, John R. Maximum power point tracking of PV system using ANFIS prediction and fuzzy logic tracking. In: Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS). Hong Kong, China, 2008, 19–21
[20]
Jang J S R, Sun C T, Mizutani E. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, 1997
[21]
Patcharaprakiti N, Premrudeepreechacharn S, Sriuthaisiriwong Y. Maximum power point tracking using adaptive fuzzy logic control for grid connected photovoltaic system. Renewable Energy, 2005, 30(1): 1771–1788
[22]
Vincheh M R, Kargar A, Markadeh G A. A hybrid control method for maximum power point tracking (MPPT) in photovoltaic systems. Arabian Journal for Science and Engineering, 2014, 39(6): 4715–4725
CrossRef Google scholar
[23]
Ramaprabha R, Mathur B L. Intelligent controller based maximum power point tracking for solar PV system. International Journal of Computers and Applications, 2011, 12(10): 37–41
CrossRef Google scholar
[24]
Rezvani A, Gandomkar M, Izadbakhsh M, Vafaei S. Optimal power tracker for photovoltaic system using ann-ga. International Journal of Current Life Sciences, 2014, 4(9): 107–111
[25]
Yang J, Honavar V. Feature subset selection using a genetic algorithm. IEEE Intelligent Systems, 1998, 13(2): 44–49
CrossRef Google scholar
[26]
Blaabjerg F, Teodorescu R, Liserre M, Tim-bus A V. Overview of control and grid synchronization for distributed power generation systems. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1398–1409
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2019 KB)

Accesses

Citations

Detail

Sections
Recommended

/