Widely distribution of hematological parameters in thalassemia patients with similar α-globin genotype
Bijan Keikhaei, Pejman Salehi-Fard, Mostafa Paridar, Mehraneh Karimzadeh, Razie Dehghani, Asma Zamiri, Vahideh Takhviji
Widely distribution of hematological parameters in thalassemia patients with similar α-globin genotype
BACKGROUND: Thalassemia is known as the commonest monogenic disorder with an imbalanced rate of globin chains production of adult hemoglobin. Despite the available information about the thalassemia etiology, its phenotype varies from each patient to another. This study aimed to evaluate the hematological parameters of patients with the same -α3.7 homozygote and heterozygote genotypes to amend screening programs.
METHODS: In this observational study, we evaluated 1301 thalassemia suspected patients who referred to the Thalassemia and Hemoglobinopathy Research Center of Ahvaz University of Medical Sciences, Khuzestan, Iran during 2014-2016. According to the genotyping studies, patients divided into 2 groups with -α3.7/aa (n = 646) and -α3.7/-α3.7 (n = 181) genotypes. Thereafter, distribution of hematological parameters evaluated in both groups.
RESULTS: The mean age in heterozygous and homozygous groups was 25.7±4.5 and 26±4.4 years old, respectively. The degree of anemia was considerably varied in patients with the same genotype. MCV, RBC and MCH showed a wide distribution in patients.
CONCLUSION: The findings presented here suggest that other molecular mechanisms along with α-globin gene mutations could be involved in determining the phenotypes of alpha thalassemia patients.
hematological parameters / α-globin genotype / alpha thalassemia
[1] |
Alibakhshi R, Mehrabi M, Omidniakan L, Shafieenia S (2015). The spectrum of a-thalassemia mutations in Kermanshah Province, West Iran. Hemoglobin, 39(6): 403–406
CrossRef
Pubmed
Google scholar
|
[2] |
Cao A, Kan Y W (2013). The prevention of thalassemia. Cold Spring Harb Perspect Med, 3(2): a011775
CrossRef
Pubmed
Google scholar
|
[3] |
Coelho A, Picanço I, Seuanes F, Seixas M T, Faustino P (2010). Novel large deletions in the human a-globin gene cluster: Clarifying the HS-40 long-range regulatory role in the native chromosome environment. Blood Cells Mol Dis, 45(2): 147–153
CrossRef
Pubmed
Google scholar
|
[4] |
De Gobbi M, Viprakasit V, Hughes J R, Fisher C, Buckle V J, Ayyub H, Gibbons R J, Vernimmen D, Yoshinaga Y, de Jong P, Cheng J F, Rubin E M, Wood W G, Bowden D, Higgs D R (2006). A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science, 312(5777): 1215–1217
CrossRef
Pubmed
Google scholar
|
[5] |
Dehbozorgian J, Moghadam M, Daryanoush S, Haghpanah S, Imani Fard J, Aramesh A, Shahsavani A, Karimi M (2015). Distribution of alpha-thalassemia mutations in Iranian population. Hematology, 20(6): 359–362
CrossRef
Pubmed
Google scholar
|
[6] |
Derakhshan S M, Khaniani M S, Afkhami F, PourFeizi A H (2016). Molecular study of deletional and nondeletional mutations on the a-globin locus in the Azeri population of Northwestern Iran. Hemoglobin, 40(5): 319–322
CrossRef
Pubmed
Google scholar
|
[7] |
Eftekhari H, Tamaddoni A, Mahmoudi Nesheli H, Vakili M, Sedaghat S, Banihashemi A, Azizi M, Youssefi Kamangar R, Akhavan-Niaki H (2017). A comprehensive molecular investigation of a-thalassemia in an Iranian cohort from different provinces of North Iran. Hemoglobin, 41(1): 32–37
CrossRef
Pubmed
Google scholar
|
[8] |
Farashi S, Harteveld C L (2017). Molecular basis of a-thalassemia. Blood Cells Mol Dis
Pubmed
|
[9] |
Galanello R, Cao A (2011). Gene test review. Alpha-thalassemia. Genet Med, 13(2): 83–88
CrossRef
Pubmed
Google scholar
|
[10] |
Harteveld C L, Higgs D R (2010). a-thalassaemia. Orphanet J Rare Dis, 5(1): 13
CrossRef
Pubmed
Google scholar
|
[11] |
HiggsD R, Gibbons R J ( 2010). The molecular basis of -thalassemia: a model for understanding human molecular genetics. Hematology/Oncology Clinics, 24(6): 1033–1054
|
[12] |
Higgs D R, Wood W G (2008). Long-range regulation of a globin gene expression during erythropoiesis. Curr Opin Hematol, 15(3): 176–183
CrossRef
Pubmed
Google scholar
|
[13] |
Ilan L, Osman F, Namer L S, Eliahu E, Cohen-Chalamish S, Ben-Asouli Y, Banai Y, Kaempfer R (2017). PKR activation and eIF2a phosphorylation mediate human globin mRNA splicing at spliceosome assembly. Cell Res, 27(5): 688–704
CrossRef
Pubmed
Google scholar
|
[14] |
Kanavakis E, Papassotiriou I, Karagiorga M, Vrettou C, Metaxotou-Mavrommati A, Stamoulakatou A, Kattamis C, Traeger-Synodinos J (2000). Phenotypic and molecular diversity of haemoglobin H disease: a Greek experience. Br J Haematol, 111(3): 915–923
Pubmed
|
[15] |
Keikhaei B, Slehi-Fard P, Shariati G, Khosravi A (2018). Genetics of Iranian Alpha-Thalassemia Patients: A Comprehensive Original Study. Biochem Genet,
CrossRef
Pubmed
Google scholar
|
[16] |
Liu Y T, Old J M, Miles K, Fisher C A, Weatherall D J, Clegg J B (2000). Rapid detection of alpha-thalassaemia deletions and alpha-globin gene triplication by multiplex polymerase chain reactions. Br J Haematol, 108(2): 295–299
CrossRef
Pubmed
Google scholar
|
[17] |
Musallam K M ( 2013). Non-transfusion-dependent thalassemias. Haematologica, 98(6): 833–844
|
[18] |
Onay H, Aykut A, Karaca E, Durmaz A, Solmaz A E, Çoğulu Ö, Aydınok Y, Vergin C, Özkınay F (2015). Molecular spectrum of a-globin gene mutations in the Aegean region of Turkey: first observation of three a-globin gene mutations in the Turkish population. Int J Hematol, 102(1): 1–6
CrossRef
Pubmed
Google scholar
|
[19] |
Ribeiro D,Sonati M ( 2008). Regulation of human alpha-globin gene expression and alpha-thalassemia. Genet Mol Res, 7(4):1045–53
|
[20] |
Sanger F, Nicklen S, Coulson A R (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA, 74(12): 5463–5467
CrossRef
Pubmed
Google scholar
|
[21] |
Satta S, Paglietti M E, Sollaino M C, Barella S, Moi P, Desogus M F, Demartis F R, Manunza L, Origa R (2017). Changes in HbA2 and HbF in alpha thalassemia carriers with KLF1 mutation. Blood Cells Mol Dis, 64: 30–32
CrossRef
Pubmed
Google scholar
|
[22] |
Singer S T (2009). Variable clinical phenotypes of a-thalassemia syndromes. Sci World J, 9: 615–625
CrossRef
Pubmed
Google scholar
|
[23] |
Sollaino M C, Paglietti M E, Loi D, Congiu R, Podda R, Galanello R (2010). Homozygous deletion of the major alpha-globin regulatory element (MCS-R2) responsible for a severe case of hemoglobin H disease. Blood, 116(12): 2193–2194
CrossRef
Pubmed
Google scholar
|
[24] |
Surapolchai P, Chuansumrit A, Sirachainan N, Kadegasem P, Leung K C, So C C (2017). A molecular study on the role of alpha-hemoglobin-stabilizing protein in hemoglobin H disease. Ann Hematol, 96(6): 1005–1014
CrossRef
Pubmed
Google scholar
|
[25] |
Tamaddoni A, Hadavi V, Nejad N H, Khosh-Ain A, Siami R, Aghai-Meibodi J, Almadani N, Oberkanins C, Law H Y, Najmabadi H (2009). a-Thalassemia mutation analyses in Mazandaran province, North Iran. Hemoglobin, 33(2): 115–123
CrossRef
Pubmed
Google scholar
|
[26] |
Valaei A, Karimipoor M, Kordafshari A, Zeinali S (2018). Molecular Basis of a-Thalassemia in Iran. Iran Biomed J, 22(1): 6–14
Pubmed
|
[27] |
Vernimmen D, Marques-Kranc F, Sharpe J A, Sloane-Stanley J A, Wood W G, Wallace H A, Smith A J, Higgs D R (2009). Chromosome looping at the human a-globin locus is mediated via the major upstream regulatory element (HS-40). Blood, 114(19): 4253–4260
CrossRef
Pubmed
Google scholar
|
[28] |
Viprakasit V, Kidd A M, Ayyub H, Horsley S, Hughes J, Higgs D R (2003). De novo deletion within the telomeric region flanking the human a globin locus as a cause of a thalassaemia. Br J Haematol, 120(5): 867–875
CrossRef
Pubmed
Google scholar
|
[29] |
Wajcman H, Traeger-Synodinos J, Papassotiriou I, Giordano P C, Harteveld C L, Baudin-Creuza V, Old J (2008). Unstable and thalassemic a chain hemoglobin variants: a cause of Hb H disease and thalassemia intermedia. Hemoglobin, 32(4): 327–349
CrossRef
Pubmed
Google scholar
|
[30] |
Wu M Y, He Y, Yan J M, Li D Z (2017). A novel selective deletion of the major a-globin regulatory element (MCS-R2) causing a-thalassaemia. Br J Haematol, 176(6): 984–986
CrossRef
Pubmed
Google scholar
|
[31] |
Yu L H, Liu D, Cai R, Shang X, Zhang X H, Ma X X, Yan S H, Fang P, Zheng C G, Wei X F, Liu Y H, Zhou T B, Xu X M (2015). Changes in hematological parameters in a-thalassemia individuals co-inherited with erythroid Krüppel-like factor mutations. Clin Genet, 88(1): 56–61
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |